EasyR1项目安装与配置指南
1. 项目基础介绍
EasyR1是一个高效、可扩展的多模态强化学习训练框架,基于veRL项目进行优化改进,用于支持视觉语言模型。该项目主要使用Python 3.9+版本进行开发,致力于为用户提供一个高效稳定的强化学习训练平台。
2. 项目使用的关键技术和框架
- HybirdEngine: 提供灵活高效的数据处理和模型训练机制。
- vLLM: 使用最新的vLLM版本,特别是其SPMD模式,以提升训练效率。
- 支持模型: 包括Llama3/Qwen2/Qwen2.5语言模型,Qwen2/Qwen2.5-VL视觉语言模型,以及DeepSeek-R1蒸馏模型。
- 支持算法: GRPO, Reinforce++, ReMax, RLOO等强化学习算法。
- 支持数据集: 支持特定格式的文本数据集和视觉-文本数据集。
3. 项目安装和配置准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖:
- Python 3.9+ -pip (Python包管理器) -Docker (用于构建环境,可选)
详细安装步骤
第一步:克隆项目仓库
打开命令行终端,执行以下命令克隆EasyR1项目:
git clone https://github.com/hiyouga/EasyR1.git
第二步:安装Python依赖
进入项目目录,安装项目所需的Python包:
cd EasyR1
pip install -e .
第三步:构建Docker环境(可选)
如果您选择使用Docker环境,可以构建项目的Docker镜像:
# 选择稳定版本
docker pull hiyouga/verl:ngc-th2.5.1-cu120-vllm0.7.4-hotfix
# 或者选择夜间版本
docker pull hiyouga/verl:ngc-th2.6.0-cu120-vllm0.8.2
第四步:运行示例脚本
根据项目提供的示例脚本开始训练模型。例如,运行以下命令以使用GRPO算法训练Qwen2.5-VL模型:
bash examples/qwen2_5_vl_7b_geo3k_grpo.sh
按照以上步骤,您应该能够成功安装并配置EasyR1项目,开始您的强化学习训练任务。如果在安装或配置过程中遇到任何问题,请查阅项目的官方文档或加入项目讨论组获取帮助。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考