EasyR1 使用教程

EasyR1 使用教程

EasyR1 EasyR1: An Efficient, Scalable, Multi-Modality RL Training Framework based on veRL EasyR1 项目地址: https://gitcode.com/gh_mirrors/ea/EasyR1

1. 项目介绍

EasyR1 是一个基于 veRL 项目的高效、可扩展的多模态强化学习训练框架。它通过 HybirdEngine 设计和 vLLM 的最新版本 SPMD 模式,提供了对多种模型、算法和数据集的支持,适用于文本、视觉以及视觉-文本数据的多模态学习任务。

2. 项目快速启动

环境搭建

首先,您需要克隆 EasyR1 项目仓库:

git clone https://github.com/hiyouga/EasyR1.git
cd EasyR1
pip install -e .

模型训练

以下是使用 GRPO 算法在 Geometry3K 数据集上训练 Qwen2.5-VL 7B 模型的命令:

bash examples/qwen2_5_vl_7b_geo3k_grpo.sh

检查点合并

训练完成后,您可能需要将检查点合并为 Hugging Face 格式:

python3 scripts/model_merger.py --local_dir checkpoints/easy_r1/exp_name/global_step_1/actor

3. 应用案例和最佳实践

  • 自定义数据集:请参考示例数据集准备您自己的数据集。文本数据集可以参考 Math12k,视觉-文本数据集可以参考 Geometry3k
  • 理解 GRPO 算法:要了解 GRPO 算法,您可以参考 Hugging Face 的博客
  • 多节点环境运行 70B+ 模型:请查看 veRL 官方文档,了解多节点训练和 Ray 调试器的使用。

4. 典型生态项目

  • MMR1:推动多模态推理的前沿。
  • Vision-R1:激励多模态大型语言模型的推理能力。
  • Seg-Zero:通过认知强化进行推理链引导的分割。
  • MetaSpatial:在 VLMs 中强化 3D 空间推理,用于元宇宙。

EasyR1 EasyR1: An Efficient, Scalable, Multi-Modality RL Training Framework based on veRL EasyR1 项目地址: https://gitcode.com/gh_mirrors/ea/EasyR1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祝舟连

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值