FLUX.1模型安装与配置指南
flux Official inference repo for FLUX.1 models 项目地址: https://gitcode.com/gh_mirrors/flux49/flux
1. 项目基础介绍
FLUX.1是由Black Forest Labs开发的一款文本到图像生成的开源模型。它能够根据用户的文本描述生成相应的图像。该项目主要使用Python编程语言实现,并且依赖于多种深度学习框架。
2. 项目使用的关键技术和框架
- Python:作为主要的编程语言,用于编写模型推理和API接口代码。
- TensorRT:用于加速深度学习模型的推理过程。
- PyTorch:一种流行的深度学习框架,用于模型的训练和推理。
- HuggingFace:提供模型的存储和API服务。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统中已安装以下软件:
- Python 3.10或更高版本
- pip(Python的包管理工具)
- CUDA(NVIDIA的并行计算平台和编程模型)
此外,您还需要具备基本的命令行操作知识。
详细安装步骤
步骤1:克隆项目仓库
首先,您需要从GitHub克隆FLUX.1的代码库:
cd ~
git clone https://github.com/black-forest-labs/flux.git
cd flux
步骤2:创建虚拟环境
创建一个Python虚拟环境并激活它:
python3.10 -m venv .venv
source .venv/bin/activate
步骤3:安装依赖
安装项目所需的依赖:
pip install -e ".[all]"
如果您想使用TensorRT支持进行安装,请按照以下步骤操作:
- 安装
enroot
:
sudo apt-get install enroot
- 下载并导入PyTorch镜像:
git clone https://github.com/black-forest-labs/flux
enroot import 'docker://nvcr.io/nvidia/pytorch:25.01-py3'
- 创建并启动容器:
enroot create -n pti2501 nvidia+pytorch+25.01-py3.sqsh
enroot start --rw -m ${PWD}/flux:/workspace/flux -r pti2501
- 安装带有TensorRT支持的依赖:
cd flux
pip install -e ".[tensorrt]" --extra-index-url https://pypi.nvidia.com
步骤4:使用API
要使用API,您需要先在Black Forest Labs API上注册并创建一个新的API密钥。您可以通过设置环境变量BFL_API_KEY
或直接在请求中提供API密钥来使用它。
以下是使用API的一个示例:
from flux.api import ImageRequest
# 创建请求
request = ImageRequest("A beautiful beach", name="flux.1.1-pro")
# 获取生成的图像的URL
print(request.url)
# 保存图像到本地
request.save("outputs/api.jpg")
# 获取图像对象
image = request.image
以上就是FLUX.1模型的详细安装和配置指南。按照这些步骤操作,您应该能够成功安装并运行该模型。
flux Official inference repo for FLUX.1 models 项目地址: https://gitcode.com/gh_mirrors/flux49/flux