Deep_SORT_Pytorch项目安装与使用指南

Deep_SORT_Pytorch项目安装与使用指南

项目地址:https://gitcode.com/gh_mirrors/de/deep_sort_pytorch

1、项目的目录结构及介绍

目录结构概览

deep_sort_pytorch/
├── deep_sort/
│   ├── __init__.py
│   ├── deep_sort.py
│   └── nn_matching.py
│   └── preprocessing.py
│   └── detection.py
│   └── kalman_filter.py
│   └── tracker.py
│   └── visualization.py
│   └── dataset/
│       └── __init__.py
│   └── evaluation/
│       └── __init__.py
│       └── metrics_generator.py
│       └── evaluator.py
├── models/
│   └── reid/
│       └── __init__.py
│       └── torchreid.py
└── tools/
    └── demo.py
    └── convert_to_onnx.py
    └── inference_video.py

目录详细说明

  • deep_sort/: 包含所有核心算法组件,包括deep_sort.py(主要逻辑),nn_matching.py(NearestNeighborDistanceMetric用于外观特征匹配),detection.py(Detection目标检测对象),kalman_filter.py(KalmanFilter用于运动估计),tracker.py(Tracker跟踪器)。

  • models/reid/: 存储用于ReID(重识别)的模型。这些模型通常用于计算两个图像之间的相似度。

  • tools/: 提供工具脚本,例如demo.py用于快速演示算法的效果,convert_to_onnx.py用于将模型转换成ONNX格式。

2、项目的启动文件介绍

demo.py

tools/demo.py 是一个示例脚本,展示如何在一段视频中应用DeepSORT算法进行多目标跟踪。

使用方法:

运行以下命令可以在给定的视频上启动跟踪过程:

python tools/demo.py --source <video_path> --output <output_path>

这里的 <video_path> 是输入视频的路径,<output_path> 是输出跟踪结果的视频路径。

3、项目的配置文件介绍

配置要点

虽然 Deep_SORT_Pytorch 项目并没有显式的一个全局配置文件,但其关键配置参数通常位于以下位置:

tools/demo.py 中,我们可以找到跟踪相关的配置,如:
parser.add_argument('--max_age', type=int, default=70,
                    help="Maximum number of frames to keep alive a track without associated detections.")
parser.add_argument('--nms_max_overlap', type=float, default=1.0,
                    help="Non-maxima suppression threshold: lower means more filtering")
parser.add_argument('--min_detection_height', type=int, default=0)
parser.add_argument('--max_cosine_distance', type=float, default=0.2,
                    help="Gating threshold for cosine distance metric (object appearance)")

这些参数控制着跟踪过程中的一些关键行为,例如轨道的最大存活周期,外观差异容忍程度等。

总结来说,在 deep_sort/ 文件夹内的各个模块含有它们各自的参数,而在 tools/ 下的脚本(如 demo.py)提供了面向用户的命令行接口,用于设置具体执行时的各种参数。

deep_sort_pytorch MOT using deepsort and yolov3 with pytorch deep_sort_pytorch 项目地址: https://gitcode.com/gh_mirrors/de/deep_sort_pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴麒琰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值