Deep_SORT_Pytorch项目安装与使用指南
项目地址:https://gitcode.com/gh_mirrors/de/deep_sort_pytorch
1、项目的目录结构及介绍
目录结构概览
deep_sort_pytorch/
├── deep_sort/
│ ├── __init__.py
│ ├── deep_sort.py
│ └── nn_matching.py
│ └── preprocessing.py
│ └── detection.py
│ └── kalman_filter.py
│ └── tracker.py
│ └── visualization.py
│ └── dataset/
│ └── __init__.py
│ └── evaluation/
│ └── __init__.py
│ └── metrics_generator.py
│ └── evaluator.py
├── models/
│ └── reid/
│ └── __init__.py
│ └── torchreid.py
└── tools/
└── demo.py
└── convert_to_onnx.py
└── inference_video.py
目录详细说明
-
deep_sort/
: 包含所有核心算法组件,包括deep_sort.py
(主要逻辑),nn_matching.py
(NearestNeighborDistanceMetric
用于外观特征匹配),detection.py
(Detection
目标检测对象),kalman_filter.py
(KalmanFilter
用于运动估计),tracker.py
(Tracker
跟踪器)。 -
models/reid/
: 存储用于ReID(重识别)的模型。这些模型通常用于计算两个图像之间的相似度。 -
tools/
: 提供工具脚本,例如demo.py
用于快速演示算法的效果,convert_to_onnx.py
用于将模型转换成ONNX格式。
2、项目的启动文件介绍
demo.py
tools/demo.py
是一个示例脚本,展示如何在一段视频中应用DeepSORT算法进行多目标跟踪。
使用方法:
运行以下命令可以在给定的视频上启动跟踪过程:
python tools/demo.py --source <video_path> --output <output_path>
这里的 <video_path>
是输入视频的路径,<output_path>
是输出跟踪结果的视频路径。
3、项目的配置文件介绍
配置要点
虽然 Deep_SORT_Pytorch 项目并没有显式的一个全局配置文件,但其关键配置参数通常位于以下位置:
在 tools/demo.py
中,我们可以找到跟踪相关的配置,如:
parser.add_argument('--max_age', type=int, default=70,
help="Maximum number of frames to keep alive a track without associated detections.")
parser.add_argument('--nms_max_overlap', type=float, default=1.0,
help="Non-maxima suppression threshold: lower means more filtering")
parser.add_argument('--min_detection_height', type=int, default=0)
parser.add_argument('--max_cosine_distance', type=float, default=0.2,
help="Gating threshold for cosine distance metric (object appearance)")
这些参数控制着跟踪过程中的一些关键行为,例如轨道的最大存活周期,外观差异容忍程度等。
总结来说,在 deep_sort/
文件夹内的各个模块含有它们各自的参数,而在 tools/
下的脚本(如 demo.py
)提供了面向用户的命令行接口,用于设置具体执行时的各种参数。