3D U-Net CNN医学图像分割项目教程

3D U-Net CNN医学图像分割项目教程

3DUnetCNNPytorch 3D U-Net Convolution Neural Network (CNN) designed for medical image segmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN

1. 项目介绍

3D U-Net CNN是由Ellisdg开发的Python实现,专门用于医学图像的三维分割任务。这个开源项目利用PyTorch框架构建了一个灵活且可控制的深度学习模型,便于研究人员和开发者应用在医学成像数据上。项目的目标是简化3D卷积神经网络的训练和应用过程,并提供与多种医学挑战数据集的集成示例。

2. 项目快速启动

首先,确保你的系统已经安装了以下依赖库:

  • PyTorch
  • Nilearn
  • Pandas
  • Keras

若尚未安装,可以通过运行以下命令安装:

pip install torch nilearn pandas keras

接下来,克隆项目仓库:

git clone https://github.com/ellisdg/3DUnetCNN.git
cd 3DUnetCNN

为了快速运行一个例子,你需要准备相应的医学图像数据集,例如BraTS 2020。将数据集解压并放在examples目录下,按照项目结构组织。

然后,运行训练脚本来启动模型训练:

python examples/train.py --data_path examples/BraTS2020 --model_path models

这里的--data_path参数指定了数据集的位置,而--model_path参数是保存模型的目录。

3. 应用案例和最佳实践

示例:脑肿瘤分割

该项目提供了BraTS 2020数据集上的脑肿瘤分割示例。在训练完成后,你可以使用测试脚本来评估模型性能:

python examples/test.py --data_path examples/BraTS2020 --model_path models/your_model.h5

最佳实践包括:

  1. 数据预处理:确保输入数据经过适当标准化和增强。
  2. 超参数调优:尝试不同的网络架构、批大小、学习率以优化性能。
  3. 模型验证:定期验证模型在验证集上的性能,避免过拟合。

4. 典型生态项目

该项目与其他几个生态项目紧密相关,包括但不限于:

  • Nilearn:用于神经影像学数据分析,常用于数据预处理。
  • BraTS Challenge:提供医学图像数据集,用于评估模型的分割能力。
  • Kaggle Competitions:涵盖多个医学图像分割挑战,可测试和比较模型效果。

结合这些生态项目,你可以进一步改善3D U-Net CNN模型,参与竞赛,或者贡献你的研究成果。


以上就是3D U-Net CNN项目的基础介绍及使用指南。了解更多信息,可以直接查阅项目GitHub页面上的完整文档和示例代码。祝你在医学图像分割研究中取得成功!

3DUnetCNNPytorch 3D U-Net Convolution Neural Network (CNN) designed for medical image segmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
U-Net是一种用于医学图像分割的深度学习模型,它在2015年由Olaf Ronneberger等人提出。U-Net的结构类似于一个U形,因此得名,它基于卷积神经网络(CNN)的思想,使用反卷积层实现了图像的上采样,在这方面比其他图像分割模型更具优势。 下面是U-Net模型的结构: ![U-Net模型](https://www.jeremyjordan.me/content/images/2018/05/u-net-architecture.png) U-Net模型分为两个部分:编码器和解码器。编码器部分由卷积层和最大池化层组成,在特征提取的同时缩小输入图像的大小。解码器部分由反卷积层和卷积层组成,将特征图像上采样到原始大小,并输出分割结果。 为了更好地理解U-Net模型,我们可以通过一个医学图像分割的实战来进一步学习。 ## 实战:使用U-Net进行肝脏图像分割 ### 数据集 我们使用了一个公共的医学图像分割数据集,名为MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge Data。该数据集包含131个肝脏CT图像,每个图像的大小为512x512,以及相应的肝脏和肝癌分割结果。 数据集可以从以下网址下载:https://competitions.codalab.org/competitions/17094 ### 环境配置 - Python 3.6 - TensorFlow 1.14 - keras 2.2.4 ### 数据预处理 在训练U-Net模型之前,我们需要对数据进行预处理。这里我们使用了一些常见的数据增强技术,包括旋转、翻转、缩放和随机裁剪等。 ```python import numpy as np import cv2 import os def data_augmentation(image, label): if np.random.random() < 0.5: # rotate image and label angle = np.random.randint(-10, 10) rows, cols = image.shape[:2] M = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1) image = cv2.warpAffine(image, M, (cols, rows)) label = cv2.warpAffine(label, M, (cols, rows)) if np.random.random() < 0.5: # flip image and label image = cv2.flip(image, 1) label = cv2.flip(label, 1) if np.random.random() < 0.5: # scale image and label scale = np.random.uniform(0.8, 1.2) rows, cols = image.shape[:2] M = cv2.getRotationMatrix2D((cols/2, rows/2), 0, scale) image = cv2.warpAffine(image, M, (cols, rows), borderMode=cv2.BORDER_REFLECT) label = cv2.warpAffine(label, M, (cols, rows), borderMode=cv2.BORDER_REFLECT) if np.random.random() < 0.5: # crop image and label rows, cols = image.shape[:2] x = np.random.randint(0, rows - 256) y = np.random.randint(0, cols - 256) image = image[x:x+256, y:y+256] label = label[x:x+256, y:y+256] return image, label def preprocess_data(image_path, label_path): image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE).astype(np.float32) label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE).astype(np.float32) # normalize image image = (image - np.mean(image)) / np.std(image) # resize image and label image = cv2.resize(image, (256, 256)) label = cv2.resize(label, (256, 256)) # perform data augmentation image, label = data_augmentation(image, label) # convert label to binary mask label[label > 0] = 1 return image, label ``` ### 构建U-Net模型 我们使用了Keras来构建U-Net模型,代码如下: ```python from keras.models import Model from keras.layers import Input, Conv2D, MaxPooling2D, Dropout, UpSampling2D, concatenate def unet(input_size=(256, 256, 1)): inputs = Input(input_size) # encoder conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs) conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1) conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2) conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3) conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) # decoder up5 = UpSampling2D(size=(2, 2))(pool4) up5 = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up5) merge5 = concatenate([drop4, up5], axis=3) conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge5) conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) up6 = UpSampling2D(size=(2, 2))(conv5) up6 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up6) merge6 = concatenate([conv3, up6], axis=3) conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6) conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6) up7 = UpSampling2D(size=(2, 2))(conv6) up7 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up7) merge7 = concatenate([conv2, up7], axis=3) conv7 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7) conv7 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7) up8 = UpSampling2D(size=(2, 2))(conv7) up8 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up8) merge8 = concatenate([conv1, up8], axis=3) conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8) conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) outputs = Conv2D(1, 1, activation='sigmoid')(conv8) model = Model(inputs=inputs, outputs=outputs) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model ``` ### 训练模型 我们将数据集分为训练集和测试集,然后使用Keras的fit方法来训练模型。 ```python from keras.callbacks import ModelCheckpoint # set paths train_path = '/path/to/train' test_path = '/path/to/test' # get list of images and labels train_images = sorted(os.listdir(os.path.join(train_path, 'images'))) train_labels = sorted(os.listdir(os.path.join(train_path, 'labels'))) test_images = sorted(os.listdir(os.path.join(test_path, 'images'))) test_labels = sorted(os.listdir(os.path.join(test_path, 'labels'))) # initialize model model = unet() # train model checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) model.fit_generator(generator(train_path, train_images, train_labels), steps_per_epoch=100, epochs=10, validation_data=generator(test_path, test_images, test_labels), validation_steps=50, callbacks=[checkpoint]) ``` ### 评估模型 训练完成后,我们需要对模型进行评估。这里我们使用了Dice系数和交并比(IoU)这两个常用的评估指标。 ```python def dice_coef(y_true, y_pred): smooth = 1e-5 y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) def iou(y_true, y_pred): smooth = 1e-5 y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) union = K.sum(y_true_f) + K.sum(y_pred_f) - intersection return (intersection + smooth) / (union + smooth) model = load_model('model.h5', custom_objects={'dice_coef': dice_coef, 'iou': iou}) test_images = sorted(os.listdir(os.path.join(test_path, 'images'))) test_labels = sorted(os.listdir(os.path.join(test_path, 'labels'))) dice_coefficients = [] ious = [] for i in range(len(test_images)): # preprocess image and label image_path = os.path.join(test_path, 'images', test_images[i]) label_path = os.path.join(test_path, 'labels', test_labels[i]) image, label = preprocess_data(image_path, label_path) # predict label pred = model.predict(np.expand_dims(image, axis=0))[0] # calculate dice coefficient and IoU dice_coefficient = dice_coef(np.expand_dims(label, axis=0), np.expand_dims(pred, axis=0)) iou_ = iou(np.expand_dims(label, axis=0), np.expand_dims(pred, axis=0)) dice_coefficients.append(dice_coefficient) ious.append(iou_) # calculate average dice coefficient and IoU print('Dice coefficient:', np.mean(dice_coefficients)) print('IoU:', np.mean(ious)) ``` 通过实战,我们可以更加深入地了解U-Net模型的原理和使用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尤辰城Agatha

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值