GPUStack安装与配置指南
gpustack Manage GPU clusters for running AI models 项目地址: https://gitcode.com/gh_mirrors/gp/gpustack
1. 项目基础介绍
GPUStack 是一个开源的 GPU 集群管理器,用于运行 AI 模型。它支持广泛的硬件和模型,能够根据 GPU 库存进行扩展,提供分布式推理功能,并且拥有轻量级的 Python 包。GPUStack 提供了与 OpenAI 兼容的 API,同时具备用户和 API 密钥管理、GPU 指标监控以及令牌使用和速率管理等特性。
主要编程语言:Python
2. 项目使用的关键技术和框架
- Docker:用于容器化应用,简化部署和扩展。
- Systemd/Launchd:在 Linux 和 macOS 系统中用于作为服务管理 GPUStack。
- NVIDIA CUDA:用于在支持 CUDA 的 NVIDIA GPU 上加速计算。
- AMD ROCm:用于在 AMD GPU 上加速计算。
- Ascend CANN:用于在华为 Ascend GPU 上加速计算。
- llama-box:包含 llama.cpp 和 stable-diffusion.cpp 服务器,用于支持多种 AI 模型。
- vLLM:作为推理后端,支持大型语言模型。
- vox-box:作为推理后端,用于支持多种 AI 模型。
3. 项目安装和配置的准备工作
在开始安装 GPUStack 之前,请确保您的系统满足以下要求:
- 操作系统:支持 macOS、Linux 或 Windows。
- Python:建议使用 Python 3.8 或更高版本。
- Docker:确保已经安装 Docker 并且配置正确。
- 网络:确保您的系统可以访问互联网,以便下载必要的依赖和模型。
详细安装步骤
步骤 1:安装依赖
对于 Linux 或 macOS,可以使用以下命令安装依赖:
# 安装 Docker(如果尚未安装)
# 请根据您的操作系统和版本按照官方文档进行安装
# 安装 Python 和其他依赖
sudo apt-get update
sudo apt-get install python3-pip
pip3 install gpustack
对于 Windows,请按照以下步骤操作:
- 安装 Docker Desktop。
- 打开 PowerShell 作为管理员,并运行以下命令安装 GPUStack:
Invoke-Expression (Invoke-WebRequest -Uri "https://get.gpustack.ai" -UseBasicParsing).Content
步骤 2:配置 GPUStack
安装完成后,您需要配置 GPUStack。对于 Linux 或 macOS,可以使用以下命令:
# 生成默认配置文件
gpustack setup
# 根据需要编辑配置文件,通常位于 /etc/gpustack/config.yaml
对于 Windows,您可以通过 PowerShell 编辑配置文件:
# 编辑配置文件,通常位于 $env:APPDATA\gpustack\config.yaml
notepad $env:APPDATA\gpustack\config.yaml
确保在配置文件中正确设置了所有必要的参数,如监听端口、GPU 配置等。
步骤 3:启动 GPUStack 服务
对于 Linux 或 macOS,您可以使用以下命令启动服务:
# 启动 GPUStack 服务
sudo systemctl start gpustack
对于 Windows,您可以通过 PowerShell 启动服务:
# 启动 GPUStack 服务
Start-Service gpustack
步骤 4:访问 GPUStack UI
安装并启动服务后,您可以通过浏览器访问 http://localhost:8080
(或者您在配置文件中设置的端口),使用默认的用户名和密码(通常是 admin
)登录到 GPUStack UI。
完成以上步骤后,您就可以开始在 GPUStack 中部署和管理 AI 模型了。
gpustack Manage GPU clusters for running AI models 项目地址: https://gitcode.com/gh_mirrors/gp/gpustack