NeuralProphet 使用教程

NeuralProphet 使用教程

项目地址:https://gitcode.com/gh_mirrors/ne/neural_prophet

项目介绍

NeuralProphet 是一个基于 PyTorch 的时间序列预测工具,旨在结合传统时间序列模型和深度学习方法的优势。它能够处理大规模的预测任务,并且提供了可解释的预测结果。NeuralProphet 支持多种模型组件,如自回归、趋势、季节性等,适用于各种时间序列分析场景。

项目快速启动

安装

你可以通过 pip 安装 NeuralProphet:

pip install neuralprophet

如果你计划在 Jupyter 笔记本中使用该包,推荐安装 'live' 版本:

pip install neuralprophet[live]

快速示例

以下是一个简单的使用示例:

from neuralprophet import NeuralProphet
import pandas as pd

# 读取数据
df = pd.read_csv('toiletpaper_daily_sales.csv')

# 初始化模型
m = NeuralProphet()

# 拟合模型
metrics = m.fit(df, freq="D")

# 进行预测
forecast = m.predict(df)

# 绘制预测结果
fig_forecast = m.plot(forecast)

应用案例和最佳实践

应用案例

NeuralProphet 在多个领域都有广泛的应用,例如:

  • 零售业:预测每日销售额,帮助库存管理和供应链优化。
  • 能源行业:预测电力需求,优化能源分配和减少浪费。
  • 金融行业:预测股票价格,辅助投资决策。

最佳实践

  • 数据预处理:确保时间序列数据没有缺失值,并且已经进行了适当的归一化处理。
  • 模型调参:通过调整模型的超参数(如学习率、批大小等)来提高预测性能。
  • 交叉验证:使用交叉验证来评估模型的泛化能力,避免过拟合。

典型生态项目

NeuralProphet 作为一个开源项目,与其他时间序列分析工具和库有良好的兼容性。以下是一些典型的生态项目:

  • Pandas:用于数据处理和分析。
  • Matplotlib:用于数据可视化。
  • PyTorch:用于深度学习模型的构建和训练。
  • Prophet:Facebook 开发的时间序列预测工具,NeuralProphet 在一定程度上受到了 Prophet 的启发。

通过结合这些工具,可以构建更复杂和强大的时间序列分析系统。

neural_prophet NeuralProphet: A simple forecasting package neural_prophet 项目地址: https://gitcode.com/gh_mirrors/ne/neural_prophet

NeuralProphet是Facebook开源的一个基于深度学习的时间序列预测库,它结合了Prophet模型(一种线性加季节性模型)和深度学习技术。如果你想在NeuralProphet中利用深度学习改进预测,你可以按照以下步骤操作: 1. **安装和导入库**:首先,你需要安装` fbprophet` 和 `facebookresearch prophet`,以及用于深度学习的库如`Keras` 或 `PyTorch`。 ```python pip install fbprophet pip install facebookresearch-prophet ``` 2. **加载数据**:像Prophet一样,需要提供日期和数值列作为输入。可以使用`pandas`处理数据。 ```python df = pd.read_csv('your_data.csv') df['ds'] = df['date_column'] df['y'] = df['value_column'] ``` 3. **创建模型实例**:在初始化`Prophet`的基础上,添加神经网络层。例如,你可以使用`add_regressor`函数添加自变量,并通过`build_model`函数构建包含NN的模型。 ```python from fbprophet import Prophet from fbprophet.diagnostics import cross_validation model = Prophet() model.add_regressor('regressor_column') nn_model = model.build_model(deep_learning=True) ``` 4. **训练模型**:使用`fit`函数训练包含深度学习部分的模型。 ```python nn_model.fit(df) ``` 5. **交叉验证**:为了评估模型性能,可以使用交叉验证功能。 ```python cv_results = cross_validation(nn_model, df, horizon='1 period', verbose=False) ``` 6. **预测**:最后,你可以使用`predict`函数生成预测结果,这将包括基本的Prophet预测加上深度学习增强的部分。 ```python future = model.make_future_dataframe(periods=forecast_length) forecast = nn_model.predict(future) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韦蓉瑛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值