li_slam_ros2: 基于ROS 2的激光雷达与IMU紧密耦合SLAM方案
项目基础介绍
li_slam_ros2
是一个开源项目,旨在实现基于ROS 2(Robot Operating System 2)的激光雷达(Lidar)与惯性测量单元(IMU)紧密耦合的SLAM(Simultaneous Localization and Mapping)系统。本项目基于 lidarslam_ros2
和 LIO-SAM
IMU复合方法,利用激光雷达和IMU的数据融合,实现更精确的定位和建图。主要的编程语言是C++,同时使用了一些CMake和Python代码来辅助构建和配置。
核心功能
- 数据融合:利用激光雷达和IMU的数据进行紧密耦合,提高SLAM系统的精度和鲁棒性。
- ** scan-matcher**:通过NDT(Normal Distributions Transform)和GICP(Generalized Iterative Closest Point)算法进行扫描匹配,实现激光雷达数据的局部优化。
- ** loop closure**:通过检测和优化闭环,减少长时间运行中的累积误差,提高地图的一致性和准确性。
- 建图与定位:构建三维地图,并在地图中定位机器人,支持实时SLAM和后处理优化。
最近更新的功能
- 优化性能:项目最近的更新集中在提高整体性能,包括减少计算时间,优化数据处理的算法。
- 改进loop closure算法:在闭环检测方面进行了算法优化,提高了闭环的检测效率和准确性。
- 代码重构:为了提高代码的可维护性和可读性,进行了一些代码重构和模块化改进。
- 文档更新:更新了项目文档,提供了更详细的安装指南和使用说明,使得新用户更容易上手。
本项目适用于机器人导航、无人驾驶等领域,具有高度的灵活性和扩展性,是一个活跃的开源SLAM解决方案。