UniPC:加速扩散模型采样的统一预测-校正框架

UniPC:加速扩散模型采样的统一预测-校正框架

UniPC [NeurIPS 2023] UniPC: A Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models UniPC 项目地址: https://gitcode.com/gh_mirrors/un/UniPC

项目介绍

UniPC(Unified Predictor-Corrector)是由Wenliang ZhaoLujia BaiYongming RaoJie ZhouJiwen Lu共同开发的一个开源项目,旨在为扩散模型的快速采样提供一个统一的预测-校正框架。该项目已在NeurIPS 2023上发表,并提供了PyTorch实现。

UniPC的核心思想是通过一个统一的分析形式,结合预测器(UniP)和校正器(UniC),支持任意阶数的采样。与传统的采样方法相比,UniPC在极少的步数(5~10步)内就能显著提高采样质量,且收敛速度更快。

项目技术分析

UniPC框架的设计理念是模型无关的,支持像素空间和潜在空间的扩散模型,适用于无条件和有条件的采样。其核心技术包括:

  1. 统一预测-校正框架:UniPC通过统一的分析形式,将预测器和校正器结合在一起,支持任意阶数的采样。
  2. 高阶精度:相较于传统方法,UniPC通过提高精度阶数,显著加快了收敛速度。
  3. 模型无关性:UniPC不仅适用于噪声预测模型,还适用于数据预测模型,具有广泛的适用性。

项目及技术应用场景

UniPC的应用场景非常广泛,尤其适用于需要快速生成高质量图像的领域,例如:

  1. 图像生成:在Stable Diffusion等图像生成模型中,UniPC可以显著减少采样步数,从而加速图像生成过程。
  2. 实时渲染:在实时渲染应用中,UniPC能够在极少的步数内生成高质量的图像,满足实时性要求。
  3. 数据增强:在数据增强任务中,UniPC可以快速生成多样化的训练数据,提高模型的泛化能力。

项目特点

UniPC的主要特点包括:

  1. 快速收敛:通过高阶精度的预测-校正框架,UniPC在极少的步数内就能达到高质量的采样效果。
  2. 模型无关性:UniPC支持多种扩散模型,无论是像素空间还是潜在空间,无论是无条件还是有条件的采样。
  3. 易于集成:UniPC已经集成到🧨 Diffusers库中,用户只需几行代码即可在PyTorch中使用UniPC进行采样。
  4. 开源社区支持:UniPC得到了HuggingFace等开源社区的支持,提供了丰富的资源和在线演示。

使用示例

以下是一个简单的使用示例,展示了如何在Stable Diffusion中使用UniPC进行快速采样:

from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
import torch

path = "CompVis/stable-diffusion-v1-4"

pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)

# 切换到UniPC调度器
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

prompt = "a highly realistic photo of green turtle"
generator = torch.manual_seed(0)

# 仅需15步即可获得良好效果 => 在GPU上仅需2-4秒
image = pipe(prompt, generator=generator, num_inference_steps=15).images[0]

# 保存图像
image.save("turtle.png")

结语

UniPC作为一个创新的预测-校正框架,为扩散模型的快速采样提供了强大的工具。无论是在图像生成、实时渲染还是数据增强领域,UniPC都能显著提升采样效率和质量。如果你正在寻找一种高效、灵活的扩散模型采样方法,UniPC无疑是一个值得尝试的选择。

UniPC [NeurIPS 2023] UniPC: A Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models UniPC 项目地址: https://gitcode.com/gh_mirrors/un/UniPC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵇殉嵘Eliza

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值