YOLOv12: 实时物体检测的开源项目教程
1. 项目介绍
YOLOv12 是一个基于注意力机制的实时物体检测框架,它旨在结合 CNN 的速度和注意力机制的性能优势。YOLOv12 在保持较高检测准确度的同时,提供了与 CNN 基础模型相媲美的速度。该项目适用于需要快速、准确进行物体检测的应用场景。
2. 项目快速启动
环境准备
首先,确保您的系统中已安装以下依赖项:
- Python 3.11
- Conda
- pip
安装步骤
-
克隆项目仓库:
git clone https://github.com/sunsmarterjie/yolov12.git cd yolov12
-
创建并激活 conda 环境:
conda create -n yolov12 python=3.11 conda activate yolov12
-
安装项目依赖:
pip install -r requirements.txt pip install -e .
模型验证
验证模型性能,可以使用以下命令:
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}.pt')
model.val(data='coco.yaml', save_json=True)
模型训练
训练自定义数据集,可以执行以下代码:
from ultralytics import YOLO
model = YOLO('yolov12n.yaml')
results = model.train(data='coco.yaml', epochs=600, batch=256, imgsz=640, scale=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.1, device="0,1,2,3")
模型预测
对图像进行物体检测,可以使用以下代码:
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}.pt')
results = model.predict(path="path/to/image.jpg")
results[0].show()
模型导出
将模型导出为引擎格式,可以执行以下代码:
from ultralytics import YOLO
model = YOLO('yolov12{n/s/m/l/x}.pt')
model.export(format="engine", half=True)
3. 应用案例和最佳实践
实时物体检测
在实时视频流中应用 YOLOv12 进行物体检测,可以参考以下实践:
- 使用 OpenCV 获取视频流
- 将视频帧输入到 YOLOv12 模型进行预测
- 显示预测结果
自定义数据集训练
为了在特定场景下进行物体检测,您可以按照以下步骤训练自定义数据集:
- 收集并标注数据集
- 准备数据集的配置文件
- 使用
ultralytics
的train
方法训练模型
4. 典型生态项目
- YOLOv12-turbo: 一个更快的 YOLOv12 版本,提高了速度和效率。
- TensorRT-YOLO: 用于加速 YOLOv12 的 TensorRT CPP 推断代码和 Google Colab 笔记本。
- Android 部署: 将 YOLOv12 部署到 Android 设备上的示例。
以上内容为您提供了 YOLOv12 的基础使用教程,希望能帮助您快速上手该项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考