RAKG:自动化知识图谱构建的强大框架
RAKG 项目地址: https://gitcode.com/gh_mirrors/ra/RAKG
项目介绍
RAKG(Document-level Retrieval Augmented Knowledge Graph Construction)是一个创新的框架,致力于利用大型语言模型实现知识图谱的自动化生成。它通过句分割和向量化处理文档,提取初步实体,并进行实体消歧和向量化。接着,它使用语料库回顾检索获取相关文本,以及图结构检索获取相关知识图谱。最后,通过大型语言模型整合检索到的信息,构建实体关系网络,并将新生成的知识图谱与原有的知识图谱相结合。
项目技术分析
RAKG的技术核心在于自动化知识图谱的构建,其流程涉及以下几个关键技术:
- 文档处理:通过句分割和向量化技术,将文档转换成机器可理解的向量表示形式。
- 实体提取与消歧:识别文档中的实体,并进行消歧,确保实体的一致性。
- 信息检索:通过语料库回顾检索和图结构检索,为实体收集相关的文本和知识图谱信息。
- 信息整合:使用大型语言模型对检索到的信息进行整合,构建实体间的关系网络。
- 知识图谱合并:将新生成的知识图谱与原有知识图谱结合,形成更加丰富和全面的知识库。
项目及技术应用场景
RAKG的应用场景广泛,包括但不限于以下领域:
- 自然语言处理:为自然语言处理任务提供丰富的知识支持,如问答系统、语义搜索等。
- 信息检索:通过知识图谱的结构化信息,提高检索的准确性和效率。
- 推荐系统:利用知识图谱的丰富关系信息,提升推荐系统的相关性。
- 数据挖掘:在复杂数据集中发现潜在的模式和关系,为数据分析和挖掘提供支持。
项目特点
RAKG项目具有以下显著特点:
- 自动化构建:无需手动干预,自动从文档中构建知识图谱。
- 模型灵活性:支持多种大型语言模型,用户可以根据需求选择合适的模型。
- 高效检索:通过有效的信息检索机制,快速收集实体相关信息。
- 易于扩展:框架设计灵活,方便集成新的模型和方法。
- 多语言支持:支持多种语言处理,能够应对不同语种的数据。
安装与使用
环境搭建
- 必备条件:Python 3.11 和 Conda(推荐使用)。
- 安装步骤:
- 克隆仓库:
git clone https://github.com/RAKG/RAKG.git
。 - 创建并激活 Conda 环境:
conda create -n RAKG python=3.11
和conda activate RAKG
。 - 安装依赖:
pip install -r requirements.txt
。
- 克隆仓库:
使用示例
- 文本输入:运行
python RAKG_example.py --input "your input text" --output result/kg.json --topic "your_topic" --is-text
。 - 文档输入:运行
python RAKG_example.py --input data/MINE.json --output result/kg.json
。
RAKG作为一个功能强大且易于使用的技术框架,为知识图谱构建提供了一种高效、自动化的解决方案,适用于多种业务场景,值得广大开发者和研究者的关注和使用。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考