SSD-PyTorch 项目使用教程
ssd-pytorch 这是一个ssd-pytorch的源码,可以用于训练自己的模型。 项目地址: https://gitcode.com/gh_mirrors/ssdp/ssd-pytorch
1. 项目目录结构及介绍
ssd-pytorch/
├── data/
│ ├── __init__.py
│ ├── config.py
│ ├── voc_classes.txt
│ └── coco_classes.txt
├── model/
│ ├── __init__.py
│ ├── ssd.py
│ └── vgg.py
├── utils/
│ ├── __init__.py
│ ├── callbacks.py
│ ├── dataloader.py
│ ├── eval.py
│ ├── loss.py
│ └── utils.py
├── weights/
│ └── ssd300_mAP_77.43_v2.pth
├── train.py
├── eval.py
├── demo.py
├── README.md
└── requirements.txt
目录结构介绍
-
data/: 存放数据集相关的配置文件和类别信息。
config.py
: 数据集配置文件。voc_classes.txt
: VOC数据集的类别信息。coco_classes.txt
: COCO数据集的类别信息。
-
model/: 存放模型定义文件。
ssd.py
: SSD模型的定义。vgg.py
: VGG模型的定义。
-
utils/: 存放工具函数和辅助文件。
callbacks.py
: 回调函数。dataloader.py
: 数据加载器。eval.py
: 模型评估函数。loss.py
: 损失函数定义。utils.py
: 其他辅助函数。
-
weights/: 存放预训练模型权重文件。
ssd300_mAP_77.43_v2.pth
: 预训练的SSD模型权重。
-
train.py: 训练脚本。
-
eval.py: 评估脚本。
-
demo.py: 演示脚本。
-
README.md: 项目说明文档。
-
requirements.txt: 项目依赖文件。
2. 项目启动文件介绍
train.py
train.py
是用于训练SSD模型的脚本。通过运行该脚本,可以加载数据集、定义模型、设置训练参数并开始训练。
python train.py
eval.py
eval.py
是用于评估已训练模型的脚本。通过运行该脚本,可以加载已训练的模型权重,并在验证集上进行评估。
python eval.py
demo.py
demo.py
是用于演示SSD模型在图像或视频上的检测效果的脚本。通过运行该脚本,可以加载预训练模型并进行实时检测。
python demo.py
3. 项目的配置文件介绍
data/config.py
config.py
文件包含了数据集的配置信息,如数据集路径、类别数量、训练和验证数据集的划分等。
# 数据集路径
DATASET_PATH = 'path/to/dataset'
# 类别数量
NUM_CLASSES = 21 # VOC数据集
# 训练和验证数据集的划分
TRAIN_SPLIT = 0.8
VAL_SPLIT = 0.2
model/ssd.py
ssd.py
文件定义了SSD模型的结构,包括主干网络(如VGG)和检测头。
class SSD(nn.Module):
def __init__(self, num_classes):
super(SSD, self).__init__()
self.num_classes = num_classes
# 定义主干网络
self.backbone = VGG()
# 定义检测头
self.detection_heads = ...
def forward(self, x):
# 前向传播
features = self.backbone(x)
detections = self.detection_heads(features)
return detections
utils/dataloader.py
dataloader.py
文件定义了数据加载器,用于加载训练和验证数据集。
class SSDDataset(Dataset):
def __init__(self, dataset_path, transform=None):
self.dataset_path = dataset_path
self.transform = transform
# 加载数据集
self.images, self.labels = self.load_dataset()
def __getitem__(self, index):
image = self.images[index]
label = self.labels[index]
if self.transform:
image = self.transform(image)
return image, label
def __len__(self):
return len(self.images)
通过以上介绍,您可以更好地理解和使用SSD-PyTorch项目。
ssd-pytorch 这是一个ssd-pytorch的源码,可以用于训练自己的模型。 项目地址: https://gitcode.com/gh_mirrors/ssdp/ssd-pytorch