BiomedGPT 开源项目使用教程

BiomedGPT 开源项目使用教程

BiomedGPT BiomedGPT: A Unified and Generalist Biomedical Generative Pre-trained Transformer for Vision, Language, and Multimodal Tasks BiomedGPT 项目地址: https://gitcode.com/gh_mirrors/bi/BiomedGPT

1. 项目介绍

BiomedGPT 是一个通用的视觉-语言基础模型,专门为多样化的生物医学任务设计。该项目通过多模态和多任务的生物医学数据集进行预训练和微调,旨在提供一个强大的工具来处理各种生物医学任务。BiomedGPT 的详细数据集信息可以在 datasets.md 文件中找到。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了 condapip。然后,按照以下步骤进行操作:

# 克隆项目仓库
git clone https://github.com/taokz/BiomedGPT.git
cd BiomedGPT/

# 创建并激活 conda 环境
conda create --name biomedgpt python=3.7.4
conda activate biomedgpt

# 安装依赖包
python -m pip install pip==21.2.4
pip install -r requirements.txt

2.2 快速启动

为了快速启动 BiomedGPT,你可以使用 Huggingface 的 transformers 库进行推理。请注意,虽然我们提供了 Fairseq-free 推理的 Colab 笔记本,但由于尚未进行广泛的实验,我们无法确认 transformersfairseq 的结果是否完全一致。

# 使用 Huggingface 的 transformers 进行推理
python -m transformers.pipelines --model biomedgpt --task vqa

3. 应用案例和最佳实践

3.1 视觉问答 (VQA)

BiomedGPT 在视觉问答任务中表现出色。你可以使用预训练的模型进行零样本推理,或者对模型进行微调以适应特定任务。

# 零样本推理
python scripts/vqa/evaluate_vqa_rad_zero_shot.sh

# 微调
python scripts/vqa/train_vqa_rad_beam.sh

3.2 图像描述生成

BiomedGPT 还可以用于生成图像描述。你可以使用以下脚本进行微调和推理。

# 微调
python scripts/caption/train_peir_gross.sh

# 推理
python scripts/caption/evaluate_peir_gross.sh

4. 典型生态项目

4.1 OFA

OFA 是一个开源的框架,BiomedGPT 基于此框架构建。OFA 提供了丰富的工具和库,帮助开发者快速构建和训练视觉-语言模型。

4.2 Fairseq

Fairseq 是 Facebook AI Research 开发的一个序列到序列建模工具包,BiomedGPT 也使用了 Fairseq 进行模型的训练和推理。

4.3 Huggingface Transformers

Huggingface 的 transformers 库是一个广泛使用的自然语言处理工具包,BiomedGPT 提供了与 transformers 兼容的权重,方便用户进行快速推理和微调。

通过这些生态项目,BiomedGPT 能够更好地与其他工具和库集成,提供更强大的功能和灵活性。

BiomedGPT BiomedGPT: A Unified and Generalist Biomedical Generative Pre-trained Transformer for Vision, Language, and Multimodal Tasks BiomedGPT 项目地址: https://gitcode.com/gh_mirrors/bi/BiomedGPT

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

<think>好的,用户想了解大模型的学习方法和相关资料。首先,我需要确定用户的具体需求,他们可能对大模型的理论、实践应用还是具体技术细节感兴趣。根据用户提供的引用,BioMedGPT-LM-7B是基于Llama-2-7B的增量训练,所以应该提到预训练和微调的方法。另外,用户提到的ELI5库可能涉及模型解释性,这也是学习的一部分。 接下来,我需要整理大模型学习的核心方法。预训练和微调是基础,需要详细说明。然后,增量训练和领域适应也很重要,特别是用户提到的生物医药语料的应用。强化学习和分布式训练可能属于进阶内容,但用户可能也需要了解。接着,模型压缩和解释性工具如ELI5也是相关点。 关于学习资料,官方文档和论文是必须的,比如Llama2的技术报告。开源社区如Hugging Face和GitHub提供了实践资源。在线课程和书籍能帮助系统学习,而实践项目可以巩固知识。用户可能需要具体的书籍推荐,比如《深度学习》和《动手学深度学习》。 然后要考虑用户可能的深层需求,他们可能是研究人员或开发者,需要不同层次的资料。是否需要从基础开始,还是直接深入高级主题?生成相关问题时要覆盖理论和实践,比如优化方法、硬件要求、评估指标等。 最后,确保回答结构清晰,分点列出方法和资料,引用提供的参考文献,并自然地添加相关问题。检查是否符合格式要求,数学表达式使用正确,没有使用Markdown,语言口语化但专业。</think>大模型学习方法与资料可通过以下框架系统掌握: ### 一、大模型核心学习方法 1. **预训练与微调范式** - 基于Transformer架构的$P(\text{token}_n|\text{token}_{1:n-1})$自回归建模 - 采用$L = -\sum_{i=1}^n \log P(w_i|w_{<i})$交叉熵损失函数 - 参数更新公式:$$\theta_{t+1} = \theta_t - \eta \nabla_\theta L(\theta)$$ 2. **增量训练(如BioMedGPT案例)** - 在领域语料上继续训练基础模型(如Llama2)[^1] - 需要处理灾难性遗忘问题:$$\min_\theta \mathbb{E}_{(x,y)\sim D_{new}}[L(f_\theta(x),y)] + \lambda \mathbb{E}_{(x,y)\sim D_{old}}[L(f_\theta(x),y)]$$ 3. **强化学习对齐** - 使用PPO算法优化人类偏好:$$\max_\phi \mathbb{E}_{x\sim \pi_\phi} \left[ r_\theta(x) - \beta D_{KL}(\pi_\phi(\cdot)||\pi_{ref}(\cdot)) \right]$$ ### 二、关键学习资料 #### 理论基础 1. **必读论文**: - 《Attention Is All You Need》(Transformer奠基论文) - 《LLaMA: Open and Efficient Foundation Language Models》(Llama技术原理)[^1] 2. **教材与课程**: - 《深度学习》(花书)第10章序列建模 - Stanford CS324《大型语言模型导论》课程资料 #### 实践资源 1. **工具框架**: - HuggingFace Transformers库(支持Llama2等模型加载) - DeepSpeed/Megatron分布式训练框架 2. **开源项目**: ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b") # 示例代码[^1] ``` 3. **领域适配案例库**: - BioMedGPT项目源码(医学领域适配范例)[^1] - ELI5解释性工具集成方法[^2] ### 三、学习路线建议 1. **基础阶段**(1-2月): - 掌握Transformer数学原理:$$ \text{Attention}(Q,K,V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V $$ - 完成HuggingFace官方教程 2. **进阶阶段**(3-6月): - 实现分布式训练Pipeline - 完成领域适配完整实验
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裘珑鹏Island

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值