rl-mpc-locomotion 项目使用教程

rl-mpc-locomotion 项目使用教程

rl-mpc-locomotion Deep RL for MPC control of Quadruped Robot Locomotion rl-mpc-locomotion 项目地址: https://gitcode.com/gh_mirrors/rl/rl-mpc-locomotion

1. 项目目录结构及介绍

rl-mpc-locomotion/
├── MPC_Controller/
│   ├── ... (MPC控制器的相关文件)
├── RL_Environment/
│   ├── ... (强化学习环境的相关文件)
├── assets/
│   ├── ... (项目资源文件)
├── docs/
│   ├── ... (项目文档)
├── extern/
│   ├── ... (外部依赖库)
├── images/
│   ├── ... (项目图片)
├── test/
│   ├── ... (测试文件)
├── .gitignore
├── .gitmodules
├── CITATION.cff
├── LICENSE
├── README.md
├── RL_MPC_Locomotion.py
├── environment.yml
└── setup.py

目录结构介绍

  • MPC_Controller/: 包含MPC控制器的相关文件,用于四足机器人的运动控制。
  • RL_Environment/: 包含强化学习环境的相关文件,用于训练和测试强化学习模型。
  • assets/: 包含项目资源文件,如模型文件等。
  • docs/: 包含项目文档,如用户手册、开发日志等。
  • extern/: 包含外部依赖库,如rsl_rl等。
  • images/: 包含项目图片,如示意图、流程图等。
  • test/: 包含测试文件,用于项目的单元测试和集成测试。
  • .gitignore: Git忽略文件,指定哪些文件或目录不需要被Git管理。
  • .gitmodules: Git子模块配置文件,用于管理外部依赖库。
  • CITATION.cff: 项目引用文件,用于学术引用。
  • LICENSE: 项目许可证文件,指定项目的开源许可证。
  • README.md: 项目说明文件,包含项目的概述、安装和使用说明等。
  • RL_MPC_Locomotion.py: 项目的启动文件,用于运行MPC控制器和强化学习模型。
  • environment.yml: 项目的配置文件,用于创建Conda环境。
  • setup.py: 项目的安装文件,用于安装项目的依赖库。

2. 项目的启动文件介绍

RL_MPC_Locomotion.py

RL_MPC_Locomotion.py 是项目的启动文件,用于运行MPC控制器和强化学习模型。该文件的主要功能包括:

  • 运行MPC控制器: 通过命令行参数指定机器人类型(如Aliengo、Go1、A1),并启动MPC控制器。
  • 运行强化学习模型: 通过命令行参数指定训练或测试模式,并加载预训练的模型权重。

使用示例

# 运行MPC控制器
python RL_MPC_Locomotion.py --robot=Aliengo

# 运行强化学习模型
python RL_MPC_Locomotion.py --mode=Policy --checkpoint=path/to/ckpt

3. 项目的配置文件介绍

environment.yml

environment.yml 是项目的配置文件,用于创建Conda环境。该文件定义了项目所需的Python版本和依赖库。

使用示例

# 创建Conda环境
conda env create -f environment.yml

setup.py

setup.py 是项目的安装文件,用于安装项目的依赖库。该文件定义了项目的元数据和依赖关系。

使用示例

# 安装项目依赖库
pip install -e .

通过以上步骤,您可以成功安装和运行 rl-mpc-locomotion 项目,并开始进行四足机器人的运动控制和强化学习训练。

rl-mpc-locomotion Deep RL for MPC control of Quadruped Robot Locomotion rl-mpc-locomotion 项目地址: https://gitcode.com/gh_mirrors/rl/rl-mpc-locomotion

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔祯拓Belinda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值