推荐开源项目:RL MPC Locomotion —— 高效的四足机器人运动控制框架
项目地址:https://gitcode.com/gh_mirrors/rl/rl-mpc-locomotion
项目介绍
RL MPC Locomotion
是一个专为四足机器人运动控制任务设计的快速仿真和强化学习训练框架。该项目通过动态预测模型预测控制(MPC)控制器的权重参数,构建了一个层次化的控制框架。该框架由高层的策略网络和低层的模型预测控制器组成,能够高效地实现四足机器人的运动控制。
项目技术分析
核心技术
-
模型预测控制(MPC):
- 该项目的MPC控制器参考了MIT Cheetah Software,但完全使用Python重写,开放了传感器数据和电机命令之间的接口,便于在各种主流仿真器中移植。
-
强化学习(RL):
- 利用NVIDIA Isaac Gym进行并行训练,使用Unitree Robotics的Aliengo模型,并支持将仿真结果转移到真实Aliengo机器人上(sim2real功能不包含在当前代码库中)。
技术栈
- 编程语言:Python 3.8
- 深度学习框架:PyTorch 1.10.0 with CUDA 11.3
- 仿真环境:Isaac Gym Preview 4
项目及技术应用场景
-
机器人研究与开发:
- 为四足机器人的运动控制提供高效的仿真和训练平台,适用于学术研究和工业开发。
-
仿真到现实(Sim2Real):
- 通过在仿真环境中训练的策略,可以转移到真实机器人上进行验证,加速机器人开发流程。
-
教育与教学:
- 提供一个完整的四足机器人控制框架,适合作为机器人学和强化学习课程的实践教学材料。
项目特点
-
层次化控制框架:
- 高层的策略网络与低层的MPC控制器相结合,实现了灵活且高效的控制系统。
-
易于移植:
- 开放的接口设计,使得控制器可以轻松移植到各种主流仿真器中。
-
并行训练:
- 利用NVIDIA Isaac Gym的并行计算能力,大幅提升训练效率。
-
丰富的文档和示例:
- 提供详细的安装指南、快速入门教程和开发日志,帮助用户快速上手。
快速上手
安装
-
克隆仓库:
git clone git@github.com:silvery107/rl-mpc-locomotion.git git submodule update --init
-
创建conda环境:
conda env create -f environment.yml
-
安装MPC求解器的Python绑定:
pip install -e .
使用示例
-
运行MPC控制器:
python RL_MPC_Locomotion.py --robot=Aliengo
支持的机器人类型包括
Go1
、A1
和Aliengo
。 -
训练新策略:
cd RL_Environment python train.py task=Aliengo headless=False
-
加载预训练模型:
python train.py task=Aliengo checkpoint=runs/Aliengo/nn/Aliengo.pth test=True num_envs=4
-
运行预训练权重策略:
python RL_MPC_Locomotion.py --robot=Aliengo --mode=Policy --checkpoint=path/to/ckpt
结语
RL MPC Locomotion
项目为四足机器人的运动控制提供了一个高效、灵活且易于使用的解决方案。无论是学术研究还是工业应用,该项目都能为开发者提供强大的支持。欢迎广大开发者试用并贡献代码,共同推动四足机器人技术的发展!