推荐开源项目:RL MPC Locomotion —— 高效的四足机器人运动控制框架

推荐开源项目:RL MPC Locomotion —— 高效的四足机器人运动控制框架

项目地址:https://gitcode.com/gh_mirrors/rl/rl-mpc-locomotion

项目介绍

RL MPC Locomotion 是一个专为四足机器人运动控制任务设计的快速仿真和强化学习训练框架。该项目通过动态预测模型预测控制(MPC)控制器的权重参数,构建了一个层次化的控制框架。该框架由高层的策略网络和低层的模型预测控制器组成,能够高效地实现四足机器人的运动控制。

项目技术分析

核心技术

  1. 模型预测控制(MPC)

    • 该项目的MPC控制器参考了MIT Cheetah Software,但完全使用Python重写,开放了传感器数据和电机命令之间的接口,便于在各种主流仿真器中移植。
  2. 强化学习(RL)

    • 利用NVIDIA Isaac Gym进行并行训练,使用Unitree Robotics的Aliengo模型,并支持将仿真结果转移到真实Aliengo机器人上(sim2real功能不包含在当前代码库中)。

技术栈

  • 编程语言:Python 3.8
  • 深度学习框架:PyTorch 1.10.0 with CUDA 11.3
  • 仿真环境:Isaac Gym Preview 4

项目及技术应用场景

  1. 机器人研究与开发

    • 为四足机器人的运动控制提供高效的仿真和训练平台,适用于学术研究和工业开发。
  2. 仿真到现实(Sim2Real)

    • 通过在仿真环境中训练的策略,可以转移到真实机器人上进行验证,加速机器人开发流程。
  3. 教育与教学

    • 提供一个完整的四足机器人控制框架,适合作为机器人学和强化学习课程的实践教学材料。

项目特点

  1. 层次化控制框架

    • 高层的策略网络与低层的MPC控制器相结合,实现了灵活且高效的控制系统。
  2. 易于移植

    • 开放的接口设计,使得控制器可以轻松移植到各种主流仿真器中。
  3. 并行训练

    • 利用NVIDIA Isaac Gym的并行计算能力,大幅提升训练效率。
  4. 丰富的文档和示例

    • 提供详细的安装指南、快速入门教程和开发日志,帮助用户快速上手。

快速上手

安装

  1. 克隆仓库:

    git clone git@github.com:silvery107/rl-mpc-locomotion.git
    git submodule update --init
    
  2. 创建conda环境:

    conda env create -f environment.yml
    
  3. 安装MPC求解器的Python绑定:

    pip install -e .
    

使用示例

  1. 运行MPC控制器:

    python RL_MPC_Locomotion.py --robot=Aliengo
    

    支持的机器人类型包括Go1A1Aliengo

  2. 训练新策略:

    cd RL_Environment
    python train.py task=Aliengo headless=False
    
  3. 加载预训练模型:

    python train.py task=Aliengo checkpoint=runs/Aliengo/nn/Aliengo.pth test=True num_envs=4
    
  4. 运行预训练权重策略:

    python RL_MPC_Locomotion.py --robot=Aliengo --mode=Policy --checkpoint=path/to/ckpt
    

结语

RL MPC Locomotion 项目为四足机器人的运动控制提供了一个高效、灵活且易于使用的解决方案。无论是学术研究还是工业应用,该项目都能为开发者提供强大的支持。欢迎广大开发者试用并贡献代码,共同推动四足机器人技术的发展!

Cheetah Trot RL Parallel MPC Stair Demo MPC Sim2Real

rl-mpc-locomotion Deep RL for MPC control of Quadruped Robot Locomotion rl-mpc-locomotion 项目地址: https://gitcode.com/gh_mirrors/rl/rl-mpc-locomotion

### 关于机器人强化学习的开源项目 #### 1. Reinforcement_LearningReinforcement 学习教程 此项目提供了一套全面的强化学习教程,涵盖了多种算法实现及其应用案例。虽然该资源并非专门针对机器人设计,但它可以作为理解强化学习理论的基础工具[^1]。 #### 2. Legged Robots that Keep on Learning 这是一个专注于机器人运动控制开源项目。它通过强化学习方法训练模拟或真实环境中的A1型机器人完成复杂动作模仿任务。开发者能够利用其提供的预训练策略以及示例代码来深入研究并改进机器人的动态行为表现[^2]。 以下是该项目的一个简单代码片段展示如何加载已有的神经网络模型来进行测试运行: ```python import torch from legged_robot import PolicyNetwork def load_policy(model_path): policy = PolicyNetwork() checkpoint = torch.load(model_path) policy.load_state_dict(checkpoint['state_dict']) return policy.eval() if __name__ == "__main__": model_file = 'pretrained_model.pth' loaded_policy = load_policy(model_file) # 假设存在一个仿真器接口用于执行动作 while True: observation = get_current_observation() # 获取当前状态观测值 action = loaded_policy(observation).detach().numpy() # 计算下一步行动 apply_action(action) # 将计算得到的动作应用于环境中 ``` #### 3. RL MPC Locomotion 控制框架 这个高效机器人运动控制系统不仅支持传统的方法论同时也融合了现代深度强化学习技术。作为一个综合性强的学习平台,非常适合用来教授学生有关机器人动力学建模及自主决策方面的专业知识[^3]。 #### 4. Four-Legged-Robot-Model 使用指南 对于希望构建自己版本物理结构仿真的研究人员来说,“Four-Legged-Robot-Model”无疑是一个极佳的选择。这里包含了详细的文档说明和必要的脚本文件以便快速上手开发工作流程[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云忱川

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值