CBDNet-PyTorch: 卷积盲去噪网络实现教程

CBDNet-PyTorch: 卷积盲去噪网络实现教程

CBDNet-pytorch项目地址:https://gitcode.com/gh_mirrors/cb/CBDNet-pytorch

1. 项目介绍

CBDNet(Convolutional Blind Denoising Network)是由Guo等人在2019年的IEEE计算机视觉和模式识别会议(CVPR)上提出的一种用于真实照片卷积盲去噪的方法。这个开源项目是CBDNet在PyTorch框架下的非官方实现,旨在提供一个高效且易于使用的图像去噪工具。它包括训练和推断两部分,并且利用了高质量的真实及合成数据集进行模型训练,以实现更好的去噪性能。

2. 项目快速启动

环境准备

确保已安装以下依赖项:

  • PyTorch
  • torchvision
  • numpy
  • scipy

可以通过pip来安装这些库:

pip install torch torchvision numpy scipy

数据集和预训练模型下载

Google Drive下载数据集和预训练模型并解压缩到指定目录:

  • 将SIDD_train, Syn_train, 和 DND文件夹解压至data/目录。
  • 预训练模型checkpoint.pth.tar保存于save_model/目录。

推理示例

运行下面的命令对小图像或图像块进行测试:

python3 Test_Patches.py --input_path <你的输入图像路径> --output_path <输出结果保存路径>

例如,如果你的输入图像位于test_image.jpg,输出希望保存为denoised_test_image.jpg,则命令如下:

python3 Test_Patches.py --input_path test_image.jpg --output_path denoised_test_image.jpg

3. 应用案例和最佳实践

最佳实践:

  • 使用DND测试集评估模型性能。
  • 对不同的噪声水平调整网络参数,以适应特定场景。
  • 在实际应用中,可以考虑结合其他预处理或后处理步骤,以进一步提升图像质量。

案例演示:

  • 在一组有噪图像上运行CBDNet,观察去噪效果。
  • 比较CBDNet与其他经典去噪算法(如BM3D, WNNM等)的差异。

4. 典型生态项目

  • DnCNN: 基于深度学习的图像去噪网络(GitHub)。
  • FFDNet: 实时优化的端到端去噪网络(GitHub).
  • NVIDIA DLR: NVIDIA的深度学习推理框架,可用于部署CBDNet等模型(GitHub)。

以上就是CBDNet-PyTorch的快速入门指南。通过上述步骤,您可以顺利地在自己的环境中运行和应用该模型。若要深入理解项目细节,建议查看项目源码和相关论文。

CBDNet-pytorch项目地址:https://gitcode.com/gh_mirrors/cb/CBDNet-pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邵冠敬Robin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值