CBDNet-PyTorch: 卷积盲去噪网络实现教程
CBDNet-pytorch项目地址:https://gitcode.com/gh_mirrors/cb/CBDNet-pytorch
1. 项目介绍
CBDNet(Convolutional Blind Denoising Network)是由Guo等人在2019年的IEEE计算机视觉和模式识别会议(CVPR)上提出的一种用于真实照片卷积盲去噪的方法。这个开源项目是CBDNet在PyTorch框架下的非官方实现,旨在提供一个高效且易于使用的图像去噪工具。它包括训练和推断两部分,并且利用了高质量的真实及合成数据集进行模型训练,以实现更好的去噪性能。
2. 项目快速启动
环境准备
确保已安装以下依赖项:
- PyTorch
- torchvision
- numpy
- scipy
可以通过pip来安装这些库:
pip install torch torchvision numpy scipy
数据集和预训练模型下载
从Google Drive下载数据集和预训练模型并解压缩到指定目录:
- 将SIDD_train, Syn_train, 和 DND文件夹解压至
data/
目录。 - 预训练模型
checkpoint.pth.tar
保存于save_model/
目录。
推理示例
运行下面的命令对小图像或图像块进行测试:
python3 Test_Patches.py --input_path <你的输入图像路径> --output_path <输出结果保存路径>
例如,如果你的输入图像位于test_image.jpg
,输出希望保存为denoised_test_image.jpg
,则命令如下:
python3 Test_Patches.py --input_path test_image.jpg --output_path denoised_test_image.jpg
3. 应用案例和最佳实践
最佳实践:
- 使用DND测试集评估模型性能。
- 对不同的噪声水平调整网络参数,以适应特定场景。
- 在实际应用中,可以考虑结合其他预处理或后处理步骤,以进一步提升图像质量。
案例演示:
- 在一组有噪图像上运行CBDNet,观察去噪效果。
- 比较CBDNet与其他经典去噪算法(如BM3D, WNNM等)的差异。
4. 典型生态项目
- DnCNN: 基于深度学习的图像去噪网络(GitHub)。
- FFDNet: 实时优化的端到端去噪网络(GitHub).
- NVIDIA DLR: NVIDIA的深度学习推理框架,可用于部署CBDNet等模型(GitHub)。
以上就是CBDNet-PyTorch的快速入门指南。通过上述步骤,您可以顺利地在自己的环境中运行和应用该模型。若要深入理解项目细节,建议查看项目源码和相关论文。
CBDNet-pytorch项目地址:https://gitcode.com/gh_mirrors/cb/CBDNet-pytorch