VSCode Data Wrangler 使用教程
vscode-data-wrangler 项目地址: https://gitcode.com/gh_mirrors/vs/vscode-data-wrangler
1、项目介绍
VSCode Data Wrangler 是微软开发的一款集成在 Visual Studio Code 和 VS Code Jupyter Notebooks 中的数据查看和清理工具。它提供了一个丰富的用户界面,帮助用户查看和分析数据,展示有洞察力的列统计信息和可视化图表,并自动生成 Pandas 代码,以便在清理和转换数据时使用。
2、项目快速启动
环境准备
- 安装 Python:确保你已经安装了 Python(建议版本为 3.8 或更高)。
- 安装 Data Wrangler 扩展:在 VS Code 中安装 Data Wrangler 扩展。
启动 Data Wrangler
从 Jupyter Notebook 启动
如果你在 Jupyter Notebook 中有一个 Pandas 数据框,运行以下代码后,你会在单元格底部看到一个“Open 'df' in Data Wrangler”按钮:
import pandas as pd
# 示例数据框
data = {'A': [1, 2, None, 4], 'B': [5, None, 7, 8]}
df = pd.DataFrame(data)
# 运行以下任意一行代码
df.head()
df.tail()
display(df)
print(df)
点击“Open 'df' in Data Wrangler”按钮即可启动 Data Wrangler。
从本地文件启动
你也可以直接从本地文件(如 CSV 文件)启动 Data Wrangler。打开包含该文件的文件夹,在文件资源管理器中右键点击文件,选择“Open in Data Wrangler”。
3、应用案例和最佳实践
案例:处理缺失值
在数据分析中,处理缺失值是一个常见的任务。Data Wrangler 可以帮助你轻松地替换缺失值。以下是一个示例:
-
打开 Data Wrangler:从 Jupyter Notebook 或本地文件启动 Data Wrangler。
-
选择操作:在操作面板中搜索“Fill Missing Values”操作。
-
设置参数:指定你希望用什么值替换缺失值。例如,使用列的中位数:
df['A'].fillna(df['A'].median(), inplace=True)
-
验证结果:在数据网格中查看更改后的数据,并验证生成的代码是否符合预期。
-
应用操作:点击“Apply”按钮,操作将被添加到清理步骤历史中。
最佳实践
- 使用 Viewing 模式进行初步探索:在 Viewing 模式下,你可以快速查看、过滤和排序数据,适合进行初步的数据探索。
- 使用 Editing 模式进行数据清理:在 Editing 模式下,你可以应用各种数据转换和清理操作,Data Wrangler 会自动生成相应的 Pandas 代码。
4、典型生态项目
- VS Code Jupyter Notebooks:Data Wrangler 与 VS Code Jupyter Notebooks 紧密集成,提供了无缝的数据分析体验。
- Pandas:Data Wrangler 自动生成 Pandas 代码,使得数据清理和转换更加高效。
- Python:Data Wrangler 支持 Python 3.8 及以上版本,确保与现代数据分析工具的兼容性。
通过以上步骤,你可以快速上手并充分利用 VSCode Data Wrangler 进行数据分析和清理工作。
vscode-data-wrangler 项目地址: https://gitcode.com/gh_mirrors/vs/vscode-data-wrangler