Med-BERT 项目使用教程

Med-BERT 项目使用教程

Med-BERTMed-BERT, contextualized embedding model for structured EHR data项目地址:https://gitcode.com/gh_mirrors/me/Med-BERT

1. 项目的目录结构及介绍

Med-BERT/
├── Fine-Tunning Tutorials/
│   └── ...
├── Pretraining Code/
│   └── ...
├── LICENSE.md
├── Med-BERT_results.jpg
├── Med-BERT_Structure.png
├── README.md
└── ...

目录结构介绍

  • Fine-Tunning Tutorials: 该目录包含用于微调 Med-BERT 模型的教程和代码。
  • Pretraining Code: 该目录包含用于预训练 Med-BERT 模型的代码。
  • LICENSE.md: 项目的许可证文件,采用 Apache-2.0 许可证。
  • Med-BERT_results.jpg: 展示 Med-BERT 模型性能结果的图片文件。
  • Med-BERT_Structure.png: 展示 Med-BERT 模型结构的图片文件。
  • README.md: 项目的介绍文件,包含项目的基本信息和使用说明。

2. 项目的启动文件介绍

Pretraining Code 目录中,主要的启动文件是用于预训练 Med-BERT 模型的脚本。这些脚本通常会包含以下内容:

  • 数据加载: 加载用于预训练的电子健康记录(EHR)数据。
  • 模型定义: 定义 Med-BERT 模型的结构,通常基于 BERT 框架。
  • 训练过程: 定义模型的训练过程,包括损失函数、优化器等。
  • 保存模型: 在训练完成后,保存预训练的模型权重。

3. 项目的配置文件介绍

Pretraining Code 目录中,通常会有一个配置文件(如 config.pyconfig.json),用于定义预训练和微调过程中的各种参数。这些参数可能包括:

  • 数据路径: 指定用于预训练的数据集路径。
  • 模型参数: 定义模型的层数、隐藏单元数等。
  • 训练参数: 定义训练的批次大小、学习率、训练轮数等。
  • 保存路径: 指定预训练模型权重的保存路径。

通过调整这些配置文件中的参数,用户可以根据自己的需求定制 Med-BERT 模型的预训练和微调过程。

Med-BERTMed-BERT, contextualized embedding model for structured EHR data项目地址:https://gitcode.com/gh_mirrors/me/Med-BERT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

左唯妃Stan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值