Med-BERT 项目使用教程
1. 项目的目录结构及介绍
Med-BERT/
├── Fine-Tunning Tutorials/
│ └── ...
├── Pretraining Code/
│ └── ...
├── LICENSE.md
├── Med-BERT_results.jpg
├── Med-BERT_Structure.png
├── README.md
└── ...
目录结构介绍
- Fine-Tunning Tutorials: 该目录包含用于微调 Med-BERT 模型的教程和代码。
- Pretraining Code: 该目录包含用于预训练 Med-BERT 模型的代码。
- LICENSE.md: 项目的许可证文件,采用 Apache-2.0 许可证。
- Med-BERT_results.jpg: 展示 Med-BERT 模型性能结果的图片文件。
- Med-BERT_Structure.png: 展示 Med-BERT 模型结构的图片文件。
- README.md: 项目的介绍文件,包含项目的基本信息和使用说明。
2. 项目的启动文件介绍
在 Pretraining Code
目录中,主要的启动文件是用于预训练 Med-BERT 模型的脚本。这些脚本通常会包含以下内容:
- 数据加载: 加载用于预训练的电子健康记录(EHR)数据。
- 模型定义: 定义 Med-BERT 模型的结构,通常基于 BERT 框架。
- 训练过程: 定义模型的训练过程,包括损失函数、优化器等。
- 保存模型: 在训练完成后,保存预训练的模型权重。
3. 项目的配置文件介绍
在 Pretraining Code
目录中,通常会有一个配置文件(如 config.py
或 config.json
),用于定义预训练和微调过程中的各种参数。这些参数可能包括:
- 数据路径: 指定用于预训练的数据集路径。
- 模型参数: 定义模型的层数、隐藏单元数等。
- 训练参数: 定义训练的批次大小、学习率、训练轮数等。
- 保存路径: 指定预训练模型权重的保存路径。
通过调整这些配置文件中的参数,用户可以根据自己的需求定制 Med-BERT 模型的预训练和微调过程。