大模型在医学领域的应用

目前,大模型已经被应用到各个领域,包括金融、法律、教育和娱乐等。医学领域因其庞大且多样化的数据、复杂的问题以及对个性化治疗的需求,无疑是大模型应用最具前景的领域之一。大模型可用于诊断、治疗方案设计、药物研发等,为医疗领域带来更高效、准确和个性化的解决方案。本文将从临床、科研以及教育三个方面对大模型在医学领域的应用进行探讨,并挑选了医学领域几个具有代表性的大模型分享给大家。

大模型在临床方向的应用

大模型是将医疗能力惠及更多人的利器。随着ChatGPT在美国医学执业考试中取得了及格分数,表明大模型在医学知识技能方面具备一定水平的理解和应用能力。当研究者将ChatGPT对患者提问的回答与医生(在业余时间在社交网络上回答)提供的回答进行比较时,大模型的回答在质量和共情方面甚至更为出色。与此同时,谷歌面向医学领域研究开发的大模型Med-PaLM2更是接近于专业医生的水平。Med-PaLM2不仅能理解和回答文本问题,还能处理和理解多模态医学信息。从图像、电子健康记录、传感器、可穿戴设备、基因组等数据源获取信息并构建人工智能系统,将使世界一流的医疗能力得以普及到每个人。

大模型是减轻临床医生事务性工作负担的好帮手。以出院记录为例,凭借大模型强大的理解和文本生成能力,医生只需要输入特定信息的简要内容,大模型几秒钟内即可输出正式的出院记录。如果大模型可以接入到医生的整个工作流程中,那么大模型有望对通话、文档、电子表格、PPT的信息自动整合和处理,极大地提升事务性工作处理效率。

大模型在科研方向的应用

大模型是有效的写作辅助工具。鉴于大模型强大的理解和文本生成能力,大模型可以用于总结信息、描述实验结果、重新撰写段落以适应特定的受众。同时通过使用特定领域的数据对大模型进行微调,还可以大幅提高同行评审、调研报告生成等方面的效率。

大模型是有力的研究分析工具。基因和蛋白质结构数据通常以文本形式表示,并且可通过语言大模型为代表的自然语言处理技术进行处理。例如AlphaFold从氨基酸序列推断蛋白质结构,ProGen生成具有可预测生物功能的蛋白质序列,而TSSNote-CyaPromBERT可识别细菌DNA中的启动子区域。同时作为生成式算法,大模型也可以用于合成数据以扩大数据集的规模,从而促进如罕见病等数据匮乏临床研究。

【一一AGI大模型学习 所有资源获取处一一】

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额

大模型在教育方向的应用

GPT-4和Med-PaLM 2在医学测试中出色结果表明,对于当前在这些医学测试中取得较低水平的学生,大模型可以作为有效的教学工具。GPT-4允许用户明确描述在对话过程中期望聊天机器人应承担的角色;如“苏格拉底导师模式”,那么大模型会通过以递减难度的问题引导学生自行思考,直到学生能够解决手头的更完整的问题。同时,使用者同大模型的对话记录可以使人类教师监控进度,并根据学生弱点进行教学调整。目前,可汗学院正在积极研究如何将GPT-4等AI工具应用于“可汗小助手”中,以达到优化在线教学的目标。Duolingo,一个主要用于学习语言的免费平台,也已经集成GPT-4以提高在线学习的互动性。通过大模型,尤其是面向医学领域微调的大模型可以有效地提升医学教育的教学效果。

医学领域的一些大模型

本文挑选了医学领域几个具有代表性的大模型分享给大家,感兴趣的话自己可以详细了解一下:

BioBERT

BioBERT是一个基于Transformer架构,专门用于生物医学文本挖掘的双向编码器模型。BioBERT主要使用PubMed摘要和PubMed Central全文文章作为训练数据。这些数据包含了大量的生物医学文献,涵盖了医学的各个领域,因此使得BioBERT能够理解和处理生物医学领域中的特定词汇和概念。

GatorTron

GatorTron是第一个由学术医疗机构开发的医学大模型。它主要使用佛罗里达大学去标识化电子病历、PubMed文章和维基百科等超过90亿字的文本数据进行训练。GatorTron训练使用的电子病历是从2011年至2021年由超过126个临床部门创作的,涵盖了大约5000万次包括但不限于住院、门诊和急诊部门的就诊情况。

BioMedLM

BioMedLM斯坦福大学开发的一个基于GPT风格的生物医学语言模型。BioMedLM的初衷是为了解决现有大型语言模型如GPT-4和Med-PaLM2在参数规模、计算成本、互联网依赖以及数据来源不透明性等方面的问题。相较于这些模型,BioMedLM提供了一个更小巧、针对性强的解决方案,不仅在性能上与更大的模型相媲美,还在隐私保护、经济性等方面展现出优势。

ClinicalGPT

ClinicalGPT是由北京邮电大学发布的一个专为临床场景设计和优化的大模型。ClinicalGPT使用了cMedQA2、cMedQA-KG、MD-EHR、MEDQA-MCMLE和MedDialog数据集进行训练及评估。其中,cMedQA2数据集是一个中文医学问答数据集,由12万个问题和22.6万个答案组成;MD-EHR数据集由来自中国多中心大型医院的电子健康记录组成,包含10万条记录,涵盖了呼吸、消化、泌尿、精神病学、神经病学、妇科和血液学等一系列疾病;MEDQA-MCMLE数据集是MEDQA原始数据集的一个子集,包含了3.4万条以多选题形式呈现的中文医学考试问题。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值