Spacetimeformer 项目使用教程

Spacetimeformer 项目使用教程

spacetimeformer项目地址:https://gitcode.com/gh_mirrors/sp/spacetimeformer

1. 项目的目录结构及介绍

Spacetimeformer 项目的目录结构如下:

spacetimeformer/
├── README.md
├── setup.py
├── spacetimeformer/
│   ├── __init__.py
│   ├── model.py
│   ├── trainer.py
│   ├── config/
│   │   ├── default_config.yaml
│   │   └── ...
│   ├── data/
│   │   ├── __init__.py
│   │   ├── dataset.py
│   │   └── ...
│   ├── utils/
│   │   ├── __init__.py
│   │   ├── helpers.py
│   │   └── ...
│   └── ...
├── requirements.txt
└── ...

目录结构介绍

  • README.md: 项目介绍文档。
  • setup.py: 项目安装脚本。
  • spacetimeformer/: 项目主目录。
    • __init__.py: 初始化文件。
    • model.py: 模型定义文件。
    • trainer.py: 训练器定义文件。
    • config/: 配置文件目录。
      • default_config.yaml: 默认配置文件。
    • data/: 数据处理相关文件。
      • dataset.py: 数据集定义文件。
    • utils/: 工具函数文件。
      • helpers.py: 辅助函数文件。

2. 项目的启动文件介绍

项目的启动文件是 train.py,位于项目根目录下。该文件负责启动训练过程,可以通过命令行参数指定模型和数据集。

启动文件介绍

  • train.py: 启动训练的主文件。
    • 使用方法:python train.py --model <model_name> --dataset <dataset_name>
    • 示例:python train.py --model spacetimeformer --dataset weather

3. 项目的配置文件介绍

项目的配置文件位于 spacetimeformer/config/ 目录下,默认配置文件为 default_config.yaml

配置文件介绍

  • default_config.yaml: 默认配置文件,包含模型训练的各种参数设置,如学习率、批大小、训练轮数等。
    • 示例配置项:
      learning_rate: 0.001
      batch_size: 32
      num_epochs: 100
      

通过修改配置文件,可以调整模型的训练行为和参数。


以上是 Spacetimeformer 项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!

spacetimeformer项目地址:https://gitcode.com/gh_mirrors/sp/spacetimeformer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穆灏璞Renata

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值