Pose2Sim 开源项目使用教程
1. 项目介绍
Pose2Sim 是一个用于无标记运动学分析的开源项目,旨在通过任何相机从2D姿态估计到3D OpenSim运动分析。该项目提供了一个完整的流程,替代传统的标记式运动捕捉方法。Pose2Sim 是免费且开源的,具有研究级别的准确性和生产级别的鲁棒性。它允许用户使用任何组合的手机、网络摄像头或GoPro相机,适用于体育领域、医生办公室或户外3D动画捕捉。
2. 项目快速启动
安装 Pose2Sim
首先,确保你已经安装了 Python 3.9 或更高版本。你可以通过以下步骤快速安装 Pose2Sim:
# 安装 Pose2Sim
pip install pose2sim
快速启动示例
以下是一个简单的示例,展示如何从视频文件生成3D关节角度:
from Pose2Sim import Pose2Sim
# 运行所有步骤
Pose2Sim.runAll(do_calibration=True, do_poseEstimation=True, do_synchronization=True,
do_personAssociation=True, do_triangulation=True, do_filtering=True,
do_markerAugmentation=True, do_kinematics=True)
3. 应用案例和最佳实践
应用案例
Pose2Sim 可以应用于多种场景,例如:
- 体育分析:通过分析运动员的动作,提供改进建议。
- 医疗康复:帮助医生和物理治疗师评估患者的康复进度。
- 动画制作:用于捕捉和生成3D动画角色的动作。
最佳实践
- 参数调整:在
Config.toml
文件中调整参数以优化结果。 - 多相机同步:确保相机同步以获得更准确的3D重建。
- 数据过滤:使用内置的过滤器来减少噪声并提高数据质量。
4. 典型生态项目
Pose2Sim 可以与其他开源项目结合使用,以扩展其功能:
- OpenSim:用于生物力学分析和模拟。
- Blender:用于3D可视化和动画制作。
- DeepLabCut:用于自定义的2D姿态估计。
通过结合这些工具,Pose2Sim 可以实现更复杂的运动分析和可视化任务。