ORB-SLAM2算法2之TUM开源数据运行ORB-SLAM2生成轨迹并用evo工具评估轨迹

22 篇文章 28 订阅 ¥49.90 ¥99.00

0 引言

ORB-SLAM2算法1 已成功编译安装ORB-SLAM2到本地,本篇目的是用TUM开源数据来运行ORB-SLAM2,并生成轨迹,最后用evo评估工具来评估ORB-SLAM2生成的轨迹和真值轨迹。

1 evo工具

1.1 简介

evo工具是用于评估视觉SLAM(Simultaneous Localization and Mapping)系统的开源Python工具包。evo"EValuation of Odometry"的简称,它提供了一系列可视化和数值化的评估指标,用于比较和分析不同SLAM算法的性能。

evo工具支持多种输入格式,包括轨迹文件(如KITTI、TUM等数据集格式)、ROS话题和TUM RGB-D数据集。它可以计算轨迹误差、绝对轨迹误差、相对尺度误差、绝对尺度误差、姿态误差等多种评估指标,并提供了多种可视化展示方式,如误差随时间变化曲线、误差分布直方图、误差累积分布函数等。

evo工具的设计目的是为了方便SLAM算法的研究和比较,它已被广泛应用于学术研究和工业应用中。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
您好!要在ORB-SLAM2中运行TUM数据集,需要进行以下步骤: 1. 下载TUM数据集:您可以从TUM官方网站上下载TUM RGB-D数据集(例如,TUM RGB-D数据集)。 2. 准备数据:解压缩下载的数据集,并确保数据集的文件结构符合ORB-SLAM2的要求。ORB-SLAM2需要RGB图像和深度图像作为输入。您可以将RGB图像和深度图像放在同一文件夹中,并使用与图像序列对应的时间戳命名图像文件(例如,rgb/,depth/ 文件夹下的文件名为 "rgb/1305031910.938850.png" 和 "depth/1305031910.938850.png")。 3. 配置参数:ORB-SLAM2提供了一个配置文件,您可以根据需要进行修改。在ORB-SLAM2的主目录下,有一个名为"Examples/RGB-D/TUMX.yaml"的配置文件,其中X代表数据集的名称(例如,TUM1.yaml, TUM2.yaml等)。您可以打开该配置文件并根据需要进行修改,例如设置相机内参、深度图缩放系数等。 4. 运行ORB-SLAM2:在终端中导航到ORB-SLAM2的主目录,并执行以下命令来运行ORB-SLAM2: ``` ./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml 数据集文件夹路径 ``` 其中,Vocabulary/ORBvoc.txt 是ORB-SLAM2的词典文件路径,Examples/RGB-D/TUMX.yaml 是您在第3步中修改的配置文件路径,数据集文件夹路径是您存储TUM数据集的文件夹路径。 5. 可视化结果:ORB-SLAM2将输出相机轨迹和地图。您可以使用ORB-SLAM2提供的可视化工具(例如,rgbd_tum)来查看结果。在终端中导航到ORB-SLAM2的主目录,并执行以下命令来可视化结果: ``` ./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml 数据集文件夹路径 ``` 此命令将打开一个窗口,显示相机轨迹和地图。 这些是在ORB-SLAM2中运行TUM数据集的基本步骤。请确保按照上述步骤进行操作,并根据需要进行相应的配置和参数调整。祝您成功运行ORB-SLAM2!如果您有任何问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZPILOTE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值