Nyström Attention: 使用Nyström方法近似自我注意力的实现
项目地址:https://gitcode.com/gh_mirrors/ny/nystrom-attention
1. 项目介绍
Nyström Attention 是一个开源项目,基于Nyström方法近似标准自我注意力,以达到线性时间复杂度 (O(n))。这种方法使得对更长序列的自注意力机制应用成为可能。Nyströmformer 是此项目的核心模型,它在多项自然语言处理任务中表现出了与标准自我注意力相当的或更优的性能。
2. 项目快速启动
首先,您需要安装 Nyström Attention。可以使用pip命令来安装:
pip install nystrom-attention
接下来,您可以使用以下代码快速启动一个Nyström Attention实例:
import torch
from nystrom_attention import NystromAttention
# 设置参数
dim = 512
dim_head = 64
heads = 8
num_landmarks = 256
pinv_iterations = 6
residual = True
# 创建 Nyström Attention 实例
attn = NystromAttention(
dim=dim,
dim_head=dim_head,
heads=heads,
num_landmarks=num_landmarks,
pinv_iterations=pinv_iterations,
residual=residual
)
# 创建一些随机数据用于测试
x = torch.randn(1, 16384, dim)
mask = torch.ones(1, 16384, dtype=torch.bool)
# 应用注意力机制
output = attn(x, mask=mask)
3. 应用案例和最佳实践
Nyström Attention 可以用于多种自然语言处理任务。以下是一个使用Nyströmformer的简单例子:
from nystrom_attention import Nystromformer
# 设置参数
dim = 512
dim_head = 64
heads = 8
depth = 6
num_landmarks = 256
pinv_iterations = 6
# 创建 Nyströmformer 实例
model = Nystromformer(
dim=dim,
dim_head=dim_head,
heads=heads,
depth=depth,
num_landmarks=num_landmarks,
pinv_iterations=pinv_iterations
)
# 创建一些随机数据用于测试
x = torch.randn(1, 16384, dim)
mask = torch.ones(1, 16384, dtype=torch.bool)
# 应用模型
output = model(x, mask=mask)
在实际应用中,您可能需要调整参数以适应特定的任务和数据。
4. 典型生态项目
目前,Nyström Attention 的生态项目还不是非常丰富,但以下是一些值得关注的相关项目:
- Transformers: Hugging Face 的 Transformers 库支持多种自我注意力机制,包括基于Nyström方法的实现。
- Long Range Arena (LRA): 这是一个用于评估不同自我注意力方法的基准测试,Nyströmformer 在其中表现出色。
通过结合这些生态项目,您可以进一步扩展Nyström Attention的应用范围。