Tianshou 项目教程
1. 项目的目录结构及介绍
Tianshou 项目的目录结构如下:
tianshou/
├── docs/
├── examples/
├── test/
├── tianshou/
│ ├── data/
│ ├── env/
│ ├── policy/
│ ├── trainer/
│ ├── exploration/
│ ├── utils/
│ ├── __init__.py
│ └── ...
├── .gitignore
├── .pre-commit-config.yaml
├── .readthedocs.yaml
├── CHANGELOG.md
├── CONTRIBUTING.md
├── LICENSE
├── MANIFEST.in
├── README.md
├── poetry.lock
└── pyproject.toml
目录介绍:
docs/
: 包含项目的文档文件。examples/
: 包含使用 Tianshou 的示例代码。test/
: 包含项目的测试代码。tianshou/
: 核心代码目录,包含数据处理、环境、策略、训练器、探索和工具等模块。.gitignore
: Git 忽略文件配置。.pre-commit-config.yaml
: 预提交钩子配置。.readthedocs.yaml
: Read the Docs 配置。CHANGELOG.md
: 项目更新日志。CONTRIBUTING.md
: 贡献指南。LICENSE
: 项目许可证。MANIFEST.in
: 打包清单文件。README.md
: 项目介绍和使用说明。poetry.lock
: Poetry 依赖锁定文件。pyproject.toml
: 项目配置文件。
2. 项目的启动文件介绍
Tianshou 项目的启动文件通常位于 examples/
目录下。例如,examples/discrete/dqn.py
是一个使用 DQN 算法的示例启动文件。
示例启动文件介绍:
# examples/discrete/dqn.py
import tianshou as ts
from tianshou.policy import DQNPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import DummyVectorEnv
# 创建环境
env = DummyVectorEnv([lambda: gym.make('CartPole-v0')])
# 创建策略
policy = DQNPolicy(...)
# 创建收集器
collector = Collector(policy, env)
# 创建经验回放缓冲区
buffer = ReplayBuffer(size=10000)
# 训练
result = onpolicy_trainer(
policy, collector, buffer,
max_epoch=10, step_per_epoch=10000, repeat_per_collect=10
)
print(result)
3. 项目的配置文件介绍
Tianshou 项目的配置文件主要包括 pyproject.toml
和 poetry.lock
。
pyproject.toml
配置文件介绍:
[tool.poetry]
name = "tianshou"
version = "0.5.0"
description = "A reinforcement learning platform based on pure PyTorch"
authors = ["Tianshou Contributors"]
license = "MIT"
[tool.poetry.dependencies]
python = "^3.11"
torch = "^1.10"
gym = "^0.21"
[tool.poetry.dev-dependencies]
pytest = "^6.2"
flake8 = "^3.9"
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
poetry.lock
配置文件介绍:
poetry.lock
文件包含了项目依赖的具体版本信息,确保在不同环境中安装相同的依赖版本。
通过以上介绍,您可以更好地理解和使用 Tianshou 项目。