Tianshou 项目教程

Tianshou 项目教程

tianshouAn elegant PyTorch deep reinforcement learning library.项目地址:https://gitcode.com/gh_mirrors/ti/tianshou

1. 项目的目录结构及介绍

Tianshou 项目的目录结构如下:

tianshou/
├── docs/
├── examples/
├── test/
├── tianshou/
│   ├── data/
│   ├── env/
│   ├── policy/
│   ├── trainer/
│   ├── exploration/
│   ├── utils/
│   ├── __init__.py
│   └── ...
├── .gitignore
├── .pre-commit-config.yaml
├── .readthedocs.yaml
├── CHANGELOG.md
├── CONTRIBUTING.md
├── LICENSE
├── MANIFEST.in
├── README.md
├── poetry.lock
└── pyproject.toml

目录介绍:

  • docs/: 包含项目的文档文件。
  • examples/: 包含使用 Tianshou 的示例代码。
  • test/: 包含项目的测试代码。
  • tianshou/: 核心代码目录,包含数据处理、环境、策略、训练器、探索和工具等模块。
  • .gitignore: Git 忽略文件配置。
  • .pre-commit-config.yaml: 预提交钩子配置。
  • .readthedocs.yaml: Read the Docs 配置。
  • CHANGELOG.md: 项目更新日志。
  • CONTRIBUTING.md: 贡献指南。
  • LICENSE: 项目许可证。
  • MANIFEST.in: 打包清单文件。
  • README.md: 项目介绍和使用说明。
  • poetry.lock: Poetry 依赖锁定文件。
  • pyproject.toml: 项目配置文件。

2. 项目的启动文件介绍

Tianshou 项目的启动文件通常位于 examples/ 目录下。例如,examples/discrete/dqn.py 是一个使用 DQN 算法的示例启动文件。

示例启动文件介绍:

# examples/discrete/dqn.py

import tianshou as ts
from tianshou.policy import DQNPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import DummyVectorEnv

# 创建环境
env = DummyVectorEnv([lambda: gym.make('CartPole-v0')])

# 创建策略
policy = DQNPolicy(...)

# 创建收集器
collector = Collector(policy, env)

# 创建经验回放缓冲区
buffer = ReplayBuffer(size=10000)

# 训练
result = onpolicy_trainer(
    policy, collector, buffer,
    max_epoch=10, step_per_epoch=10000, repeat_per_collect=10
)

print(result)

3. 项目的配置文件介绍

Tianshou 项目的配置文件主要包括 pyproject.tomlpoetry.lock

pyproject.toml 配置文件介绍:

[tool.poetry]
name = "tianshou"
version = "0.5.0"
description = "A reinforcement learning platform based on pure PyTorch"
authors = ["Tianshou Contributors"]
license = "MIT"

[tool.poetry.dependencies]
python = "^3.11"
torch = "^1.10"
gym = "^0.21"

[tool.poetry.dev-dependencies]
pytest = "^6.2"
flake8 = "^3.9"

[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"

poetry.lock 配置文件介绍:

poetry.lock 文件包含了项目依赖的具体版本信息,确保在不同环境中安装相同的依赖版本。

通过以上介绍,您可以更好地理解和使用 Tianshou 项目。

tianshouAn elegant PyTorch deep reinforcement learning library.项目地址:https://gitcode.com/gh_mirrors/ti/tianshou

### Tianshou 强化学习框架简介 Tianshou 是一个基于 PyTorch 的强化学习库,旨在提供简洁而灵活的接口以便于研究者快速开发和测试新的算法。它支持多种经典的强化学习方法以及最新的研究成果,并提供了模块化的结构设计使得用户可以轻松定制自己的实验环境[^6]。 #### 主要特点 - **模块化设计**:Tianshou 将策略、收集器、回放缓冲区等功能分离成独立组件,方便组合使用。 - **高效训练流程**:内置高效的采样机制与并行数据采集工具,提升整体性能。 - **易于扩展**:允许研究人员自由定义新模型或者调整现有实现细节。 - **文档齐全**:官方维护详尽的技术文档及示例程序帮助初学者入门。 以下是创建一个简单的 DQN 模型并通过 Gym 环境进行训练的例子: ```python from tianshou.env import SubprocVectorEnv from tianshou.policy import DQNPolicy from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer import torch.nn as nn import gym def make_env(): return gym.make('CartPole-v0') net = Net(state_shape=4, action_shape=2).cuda() optim = torch.optim.Adam(net.parameters(), lr=1e-3) policy = DQNPolicy( model=net, optim=optim, discount_factor=0.9, estimation_step=3, target_update_freq=320 ) train_collector = Collector(policy=policy, env=SubprocVectorEnv([make_env for _ in range(8)]), buffer=ReplayBuffer(size=20000)) test_collector = Collector(policy=policy, env=gym.make('CartPole-v0')) result = offpolicy_trainer( policy=policy, train_collector=train_collector, test_collector=test_collector, max_epoch=10, step_per_epoch=1000, collect_per_step=10, update_per_step=0.1, batch_size=64, save_best=True ) ``` 此代码片段展示了如何利用 Tianshou 构建基础离线策略训练过程中的几个核心要素——网络初始化、优化器配置、策略实例化、数据集构建以及最终调用 `offpolicy_trainer` 函数完成整个循环逻辑控制[^7]。 ### 学习资源推荐 对于希望深入理解该框架的朋友来说,可以从以下几个方面入手: 1. 阅读项目主页上的 README 文件获取概览信息; 2. 浏览 API 文档熟悉各个类别的功能描述及其参数选项; 3. 查看具体案例分析掌握实际应用场景下的编码技巧;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华建万

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值