MM-Diffusion 项目使用教程

MM-Diffusion 项目使用教程

MM-Diffusion[CVPR'23] MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and Video Generation项目地址:https://gitcode.com/gh_mirrors/mm/MM-Diffusion

1. 项目的目录结构及介绍

MM-Diffusion 项目的目录结构如下:

MM-Diffusion/
├── evaluations/
├── fig/
├── mm_diffusion/
├── py_scripts/
├── ssh_scripts/
├── .gitignore
├── LICENSE
├── README.md
├── requirement.txt

目录介绍

  • evaluations/: 包含评估脚本和相关文件。
  • fig/: 包含项目相关的图表和图像文件。
  • mm_diffusion/: 核心代码目录,包含模型定义、训练和生成脚本。
  • py_scripts/: 包含Python脚本,用于辅助任务。
  • ssh_scripts/: 包含SSH相关的脚本。
  • .gitignore: Git忽略文件配置。
  • LICENSE: 项目许可证文件。
  • README.md: 项目说明文档。
  • requirement.txt: 项目依赖包列表。

2. 项目的启动文件介绍

项目的启动文件主要位于 mm_diffusion/ 目录下,关键文件包括:

  • train.py: 用于训练模型的主脚本。
  • generate.py: 用于生成音频和视频的主脚本。

启动文件介绍

  • train.py:

    • 功能:用于训练多模态扩散模型。
    • 使用方法:通过命令行运行 python train.py 启动训练过程。
  • generate.py:

    • 功能:用于生成音频和视频。
    • 使用方法:通过命令行运行 python generate.py 启动生成过程。

3. 项目的配置文件介绍

项目的配置文件主要位于项目根目录下,关键配置文件包括:

  • requirement.txt: 列出了项目运行所需的Python包。
  • config.yaml: 包含项目的配置参数,如数据路径、模型参数等。

配置文件介绍

  • requirement.txt:

    • 内容:列出了项目运行所需的Python包及其版本。
    • 使用方法:通过 pip install -r requirement.txt 安装所有依赖包。
  • config.yaml:

    • 内容:包含项目的配置参数,如数据路径、模型参数等。
    • 使用方法:在启动训练或生成脚本前,根据需要修改此文件中的参数。

以上是 MM-Diffusion 项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!

MM-Diffusion[CVPR'23] MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and Video Generation项目地址:https://gitcode.com/gh_mirrors/mm/MM-Diffusion

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

任涌重

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值