MVITS for Class-Agnostic Object Detection 项目教程

MVITS for Class-Agnostic Object Detection 项目教程

mvits_for_class_agnostic_od [ECCV'22] Official repository of paper titled "Class-agnostic Object Detection with Multi-modal Transformer". mvits_for_class_agnostic_od 项目地址: https://gitcode.com/gh_mirrors/mv/mvits_for_class_agnostic_od

1. 项目的目录结构及介绍

mvits_for_class_agnostic_od/
├── configs/
│   ├── default_config.yaml
│   └── ...
├── data/
│   ├── annotations/
│   ├── images/
│   └── ...
├── models/
│   ├── __init__.py
│   ├── model.py
│   └── ...
├── scripts/
│   ├── train.py
│   ├── eval.py
│   └── ...
├── utils/
│   ├── __init__.py
│   ├── utils.py
│   └── ...
├── README.md
└── requirements.txt
  • configs/: 存放项目的配置文件,如 default_config.yaml
  • data/: 存放训练和测试数据,包括标注文件和图像文件。
  • models/: 存放模型的定义文件,如 model.py
  • scripts/: 存放项目的启动脚本,如 train.pyeval.py
  • utils/: 存放项目的工具函数和辅助代码。
  • README.md: 项目的介绍和使用说明。
  • requirements.txt: 项目的依赖库列表。

2. 项目的启动文件介绍

scripts/train.py

train.py 是项目的训练脚本,用于启动模型的训练过程。它通常会读取配置文件中的参数,加载数据集,初始化模型,并开始训练。

scripts/eval.py

eval.py 是项目的评估脚本,用于评估训练好的模型的性能。它会加载训练好的模型,并使用测试数据集进行评估。

3. 项目的配置文件介绍

configs/default_config.yaml

default_config.yaml 是项目的默认配置文件,包含了训练和评估过程中所需的各项参数。以下是一些常见的配置项:

# 数据集配置
dataset:
  name: "coco"
  root: "data/images"
  annotations: "data/annotations/instances_train2017.json"

# 模型配置
model:
  name: "mvits"
  backbone: "resnet50"
  num_classes: 80

# 训练配置
train:
  batch_size: 16
  epochs: 100
  learning_rate: 0.001

# 评估配置
eval:
  batch_size: 32
  metrics: ["mAP"]
  • dataset: 配置数据集的相关信息,如数据集名称、图像路径和标注文件路径。
  • model: 配置模型的相关信息,如模型名称、骨干网络和类别数量。
  • train: 配置训练过程的参数,如批量大小、训练轮数和学习率。
  • eval: 配置评估过程的参数,如批量大小和评估指标。

通过修改 default_config.yaml 文件,可以调整项目的各项配置,以适应不同的训练和评估需求。

mvits_for_class_agnostic_od [ECCV'22] Official repository of paper titled "Class-agnostic Object Detection with Multi-modal Transformer". mvits_for_class_agnostic_od 项目地址: https://gitcode.com/gh_mirrors/mv/mvits_for_class_agnostic_od

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕素丽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值