MVITS for Class-Agnostic Object Detection 项目教程
1. 项目的目录结构及介绍
mvits_for_class_agnostic_od/
├── configs/
│ ├── default_config.yaml
│ └── ...
├── data/
│ ├── annotations/
│ ├── images/
│ └── ...
├── models/
│ ├── __init__.py
│ ├── model.py
│ └── ...
├── scripts/
│ ├── train.py
│ ├── eval.py
│ └── ...
├── utils/
│ ├── __init__.py
│ ├── utils.py
│ └── ...
├── README.md
└── requirements.txt
- configs/: 存放项目的配置文件,如
default_config.yaml
。 - data/: 存放训练和测试数据,包括标注文件和图像文件。
- models/: 存放模型的定义文件,如
model.py
。 - scripts/: 存放项目的启动脚本,如
train.py
和eval.py
。 - utils/: 存放项目的工具函数和辅助代码。
- README.md: 项目的介绍和使用说明。
- requirements.txt: 项目的依赖库列表。
2. 项目的启动文件介绍
scripts/train.py
train.py
是项目的训练脚本,用于启动模型的训练过程。它通常会读取配置文件中的参数,加载数据集,初始化模型,并开始训练。
scripts/eval.py
eval.py
是项目的评估脚本,用于评估训练好的模型的性能。它会加载训练好的模型,并使用测试数据集进行评估。
3. 项目的配置文件介绍
configs/default_config.yaml
default_config.yaml
是项目的默认配置文件,包含了训练和评估过程中所需的各项参数。以下是一些常见的配置项:
# 数据集配置
dataset:
name: "coco"
root: "data/images"
annotations: "data/annotations/instances_train2017.json"
# 模型配置
model:
name: "mvits"
backbone: "resnet50"
num_classes: 80
# 训练配置
train:
batch_size: 16
epochs: 100
learning_rate: 0.001
# 评估配置
eval:
batch_size: 32
metrics: ["mAP"]
- dataset: 配置数据集的相关信息,如数据集名称、图像路径和标注文件路径。
- model: 配置模型的相关信息,如模型名称、骨干网络和类别数量。
- train: 配置训练过程的参数,如批量大小、训练轮数和学习率。
- eval: 配置评估过程的参数,如批量大小和评估指标。
通过修改 default_config.yaml
文件,可以调整项目的各项配置,以适应不同的训练和评估需求。