[Retentive R-CNN] Generalized Few-Shot Object Detection without Forgetting(CVPR. 2021)

Retentive R-CNN 是为了解决在Few-Shot Object Detection(FSOD)中模型对基础类别的遗忘问题。文章提出了Bias-Balanced RPN和Re-detector,以在识别新类别时不损害基础类别的准确性。通过实验,Retentive R-CNN 在MS-COCO和PASCAL VOC数据集上实现了最先进的性能,特别是在基础类别的指标上。
摘要由CSDN通过智能技术生成

在这里插入图片描述

1. Motivation

本文关注于fine-tune后的FSOD模型会在base classes上性能下降的问题。这篇文章构建了Retentive R-CNN,创新点在于Bias-Balance RPN Re-detector,用来在识别novel classes的同时,不降低原有的base classes的精度

  • However, the majority focus merely on the performance of few-shot categories and ignore the catastrophic forgetting of base classes, which is not realistic.

Meta-learning方法的缺陷:

​ 由于使用support images,那么如果当support category较多的情况下,那么网络训练的时间复杂度也会增加

  • As their computational complexity is proportional to the number of categories, these methods become rather slow or even unavailable when tackling both sets of classes of a dataset

本文还划分了目前FSOD的主要方法,可以分为Meta Learning Based以及 Transfer-learning Baed

  • Meta Learning Based

    FSRW、 Meta R-CNN、 Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector、Repmet、 MetaDet

  • Transfer Learning Based

    LSTD、TFA、MPSR、Context-Transformer

2. Contribution

  • Our contributions can be concluded as follows:
    • We find properties of base class detectors neglected in few-shot detection literature, which can be utilized to improve both base and novel class performance for transfer learning based methods with little overhead.
    • We propose a few-shot detector without forgetting, Retentive R-CNN, with Bias-Balanced RPN and Re-detector to assist novel class adaptation with base class knowledge and ensemble base and novel class detectors.
    • Our method achieves state-of-the-art overall performance on the few-shot detection benchmark[41, 17] across all settings, with leading base class metrics and competitive novel class metrics.

3. Method

在这里插入图片描述

3.1 Analysis on Transfer Learning based Few-Shot Object Detection

作者在TFA的基础上,做了以下3个实验 。

3.1.1 Why cosine classifier works?

图2(a)所示,通过L2正则化可以发现novel classs 和base class 被区分开来,并且novel class 和base class 相关性强的,L2正则化后的得分也会比较高。

  • The results are shown in Figure2(a). A massive variation of norms between base classes and unseen novel classes can be easily observed.
  • Also, the norms of unseen classes with closer relationship with seen classes are relatively higher (blue names annotated in Figure2(a))

3.1.2 Does b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值