
1. Motivation
本文关注于fine-tune后的FSOD模型会在base classes上性能下降的问题。这篇文章构建了Retentive R-CNN,创新点在于Bias-Balance RPN Re-detector,用来在识别novel classes的同时,不降低原有的base classes的精度
- However, the majority focus merely on the performance of few-shot categories and ignore the catastrophic forgetting of base classes, which is not realistic.
Meta-learning方法的缺陷:
由于使用support images,那么如果当support category较多的情况下,那么网络训练的时间复杂度也会增加
- As their computational complexity is proportional to the number of categories, these methods become rather slow or even unavailable when tackling both sets of classes of a dataset
本文还划分了目前FSOD的主要方法,可以分为Meta Learning Based以及 Transfer-learning Baed
-
Meta Learning Based
FSRW、 Meta R-CNN、 Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector、Repmet、 MetaDet
-
Transfer Learning Based
LSTD、TFA、MPSR、Context-Transformer
2. Contribution
- Our contributions can be concluded as follows:
- We find properties of base class detectors neglected in few-shot detection literature, which can be utilized to improve both base and novel class performance for transfer learning based methods with little overhead.
- We propose a few-shot detector without forgetting, Retentive R-CNN, with Bias-Balanced RPN and Re-detector to assist novel class adaptation with base class knowledge and ensemble base and novel class detectors.
- Our method achieves state-of-the-art overall performance on the few-shot detection benchmark[41, 17] across all settings, with leading base class metrics and competitive novel class metrics.
3. Method

3.1 Analysis on Transfer Learning based Few-Shot Object Detection
作者在TFA的基础上,做了以下3个实验 。

3.1.1 Why cosine classifier works?
图2(a)所示,通过L2正则化可以发现novel classs 和base class 被区分开来,并且novel class 和base class 相关性强的,L2正则化后的得分也会比较高。
- The results are shown in Figure2(a). A massive variation of norms between base classes and unseen novel classes can be easily observed.
- Also, the norms of unseen classes with closer relationship with seen classes are relatively higher (blue names annotated in Figure2(a))
Retentive R-CNN 是为了解决在Few-Shot Object Detection(FSOD)中模型对基础类别的遗忘问题。文章提出了Bias-Balanced RPN和Re-detector,以在识别新类别时不损害基础类别的准确性。通过实验,Retentive R-CNN 在MS-COCO和PASCAL VOC数据集上实现了最先进的性能,特别是在基础类别的指标上。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



