tts-gan:基于Transformer的时间序列生成对抗网络

tts-gan:基于Transformer的时间序列生成对抗网络

tts-gan TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network tts-gan 项目地址: https://gitcode.com/gh_mirrors/tt/tts-gan

项目介绍

tts-gan 是一个基于Transformer架构的时间序列生成对抗网络(GAN),它通过生成逼真的合成时间序列数据序列来解决机器学习中时间序列数据集规模较小的问题。该项目的研究论文已被第20届国际人工智能与医学会议(AIME 2022)接受发表。tts-gan 的设计理念在于利用Transformer GAN生成与原始数据相似度极高的合成时间序列数据,从而实现数据增强,提高模型的训练效果。

项目技术分析

tts-gan 的核心是利用了Transformer编码器架构,这种架构在处理具有不规则时间关系的长序列数据点时表现出色。在GAN模型中,生成器和判别器网络都是基于纯Transformer编码器构建的。每个编码器由两个复合块组成,第一个块是多头自注意力模块,第二个块是带有GELU激活函数的前馈MLP。在两个块之前应用归一化层,在每个块之后添加dropout层。此外,残差连接也被应用于两个块中。

在时间序列数据处理方面,tts-gan 将时间序列数据序列视为具有高度为1的图像,其中时间步数是图像的宽度,通道数可以是单通道或多通道。输入序列可以被表示为大小为 (Batch Size, C, 1, W) 的矩阵。通过选择一个补丁大小 N,将序列分割成多个补丁,并在每个补丁的末尾添加软位置编码值,该位置值在模型训练过程中学习。

项目及技术应用场景

tts-gan 的设计适用于机器学习中时间序列数据集较小的场景,尤其是在医疗、运动分析等领域。以下是几个具体的应用场景:

  • 医疗数据增强:在医疗数据分析中,时间序列数据通常是有限的,使用tts-gan生成合成数据可以增强训练集,提高模型的泛化能力。
  • 运动数据分析:运动员的运动轨迹和生理信号都是时间序列数据,通过tts-gan生成合成的运动数据,可以用于训练更精确的运动模型。
  • 金融市场预测:金融市场的时间序列数据变化复杂,tts-gan 可以帮助生成具有类似特征的数据序列,用于测试和优化金融市场预测模型。

项目特点

  1. 高效的时间序列生成:基于Transformer的GAN模型能够高效地生成任意长度的合成时间序列数据。
  2. 保持数据特性:在生成合成数据时,tts-gan 能够保持原始时间序列数据的特性,从而确保数据增强的有效性。
  3. 易于集成和扩展:tts-gan 的代码结构清晰,易于集成到现有的数据处理流程中,并且可以根据具体需求进行扩展。

以下是tts-gan 项目的文件结构概述,以帮助用户更好地理解和使用该项目:

  • images/:包含项目相关的图像文件。
  • pre-trained-models/:保存预训练的GAN模型检查点。
  • dataLoader.py:用于加载GAN模型训练和测试数据的数据加载器。
  • LoadRealRunningJumping.pyLoadSyntheticRunningJumping.py:分别用于加载真实和合成的跑步和跳跃数据。
  • functions.py:包含GAN模型训练和评估的函数。
  • train_GAN.py:GAN模型训练的主要文件。
  • visualizationMetrics.py:用于绘制T-SNE和PCA图的辅助函数。
  • adamw.pycfg.py:分别包含adamw优化器和参数解析功能的文件。
  • JumpingGAN_Train.pyRunningGAN_Train.py:分别用于训练跳跃和跑步GAN模型的脚本。

总结来说,tts-gan 是一个强大的时间序列数据生成工具,适用于多种机器学习场景。通过使用tts-gan,研究人员和数据科学家可以生成高质量的时间序列合成数据,从而提高模型的性能和泛化能力。

tts-gan TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network tts-gan 项目地址: https://gitcode.com/gh_mirrors/tt/tts-gan

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓滨威Delmar

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值