BAAF-Net 开源项目使用教程

BAAF-Net 开源项目使用教程

BAAF-Net Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) BAAF-Net 项目地址: https://gitcode.com/gh_mirrors/ba/BAAF-Net

1. 项目介绍

BAAF-Net 是一个用于点云语义分割的深度学习方法,由 Shi Qiu、Saeed Anwar 和 Nick Barnes 在 CVPR 2021 上提出。该方法的核心是双边上下文组件(Bilateral Context Module)和自适应融合模块(Adaptive Fusion Module),通过双边聚合增强局部上下文信息,并利用增强损失保持几何形状完整。BAAF-Net 在 S3DIS 和 SemanticKITTI 数据集上表现优异,适用于大规模点云场景的语义分割任务。

2. 项目快速启动

2.1 环境配置

首先,确保你的环境满足以下要求:

  • Python 3.6
  • TensorFlow 1.13.1
  • CUDA 10.0

安装依赖库:

pip install -r helper_requirements.txt

2.2 编译 CUDA 操作

编译 CUDA 操作以支持点云处理:

sh compile_op.sh

2.3 数据准备

下载 S3DIS 数据集并解压到 data 目录下:

python utils/data_prepare_s3dis.py

2.4 训练模型

使用以下命令开始训练模型:

python -B main_S3DIS.py --gpu 0 --mode train --test_area 5

2.5 测试模型

训练完成后,使用以下命令进行测试:

python -B main_S3DIS.py --gpu 0 --mode test --test_area 5 --model_path 'pretrained/Area5/snap-32251'

3. 应用案例和最佳实践

3.1 自动驾驶中的点云语义分割

在自动驾驶领域,点云语义分割用于识别和分类道路上的各种物体,如车辆、行人、路标等。BAAF-Net 的高效性和准确性使其成为自动驾驶系统中点云处理的理想选择。

3.2 建筑信息建模(BIM)

在建筑信息建模中,点云语义分割用于从扫描数据中提取建筑结构信息。BAAF-Net 可以帮助快速准确地分割和分类建筑元素,提高 BIM 数据处理的效率。

4. 典型生态项目

4.1 RandLA-Net

RandLA-Net 是 BAAF-Net 的基础项目,提供了高效的点云采样和局部特征聚合方法。BAAF-Net 在其基础上进一步优化了双边上下文和自适应融合模块,提升了点云语义分割的性能。

4.2 SemanticKITTI API

SemanticKITTI API 提供了用于处理和可视化 SemanticKITTI 数据集的工具。结合 BAAF-Net,可以实现对大规模点云数据的高效语义分割和可视化。

通过以上步骤,你可以快速上手 BAAF-Net 项目,并在实际应用中发挥其强大的点云语义分割能力。

BAAF-Net Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) BAAF-Net 项目地址: https://gitcode.com/gh_mirrors/ba/BAAF-Net

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵇梁易Willow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值