Time-LLM 开源项目教程
项目地址:https://gitcode.com/gh_mirrors/ti/Time-LLM
1. 项目目录结构及介绍
在 Time-LLM
开源项目中,目录结构大致如下:
Time-LLM/
├── data/ # 存放数据集和预处理脚本
│ ├── raw_data/ # 原始时间序列数据
│ └── processed_data/ # 预处理后的数据
├── models/ # 模型定义和权重保存位置
├── scripts/ # 脚本文件,包括训练、评估和预测脚本
│ ├── train.py # 训练模型的脚本
│ ├── evaluate.py # 评估模型的脚本
│ └── predict.py # 预测新数据的脚本
├── config/ # 配置文件目录
│ └── config.yml # 主要的项目配置文件
└── requirements.txt # 依赖库列表
项目的主要组成部分包括用于数据管理的 data
目录,模型相关的代码位于 models
目录,而实际操作的脚本位于 scripts
中。配置文件 config.yml
控制项目的运行参数。
2. 项目的启动文件介绍
train.py
scripts/train.py
是用于训练模型的脚本。它读取配置文件中的设置,加载数据,初始化模型,并进行训练。在训练过程中,模型的性能将被记录并可能定期保存到 models
目录下。
evaluate.py
scripts/evaluate.py
文件用于评估已经训练好的模型。它同样从配置文件获取参数,加载模型和数据,然后计算模型在验证或测试集上的性能指标。
predict.py
scripts/predict.py
用于对新的时间序列数据进行预测。这个脚本会加载预训练的模型,处理输入数据,并产生预测结果。
3. 项目的配置文件介绍
config/config.yml
是项目的主配置文件,包含了训练、评估和预测过程中的重要参数。例如:
dataset:
name: example_dataset # 数据集名称
path: ./data/processed_data/ # 预处理数据的位置
model:
name: Time-LLM # 使用的模型名
backbone: Llama-7B # LLM的背部模型
llm_dim: 4096 # LLM的维度
training:
epochs: 50 # 训练轮数
batch_size: 16 # 批次大小
learning_rate: 1e-5 # 学习率
在运行项目之前,可以修改此配置文件以适应特定任务的需求,如选择不同的语言模型(backbone
),调整学习率(learning_rate
)等。
要启动任何脚本,确保已正确安装了所有依赖项,并根据需求修改配置文件,之后可以使用以下命令运行:
python scripts/<script_name>.py
例如,运行训练脚本:
python scripts/train.py
以上就是 Time-LLM
项目的目录结构、启动文件以及配置文件的基本介绍。通过理解这些组件,您应该能够成功地配置和执行该开源项目来完成时间序列预测任务。