MCUNet 项目使用教程
1. 项目目录结构及介绍
MCUNet 项目的目录结构如下:
mcunet/
├── assets/
├── eval_det.py
├── eval_tflite.py
├── eval_torch.py
├── LICENSE
├── README.md
├── requirements.txt
├── setup.py
└── mcunet/
├── model_zoo/
└── ...
目录结构介绍
- assets/: 存放项目相关的资源文件,如示例图像等。
- eval_det.py: 用于评估目标检测模型的脚本。
- eval_tflite.py: 用于评估 TensorFlow Lite 模型的脚本。
- eval_torch.py: 用于评估 PyTorch 模型的脚本。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- requirements.txt: 项目依赖的 Python 包列表。
- setup.py: 项目的安装脚本。
- mcunet/: 项目的主要代码目录,包含模型库和其他相关代码。
2. 项目的启动文件介绍
MCUNet 项目的主要启动文件包括 eval_det.py
、eval_tflite.py
和 eval_torch.py
。这些文件分别用于评估不同类型的模型。
eval_det.py
该脚本用于评估目标检测模型。可以通过以下命令运行:
python eval_det.py
该脚本会加载预训练的目标检测模型,并在示例图像上进行预测,并将结果可视化。
eval_tflite.py
该脚本用于评估 TensorFlow Lite 模型的准确性。可以通过以下命令运行:
python eval_tflite.py --net_id mcunet-in2 --dataset imagenet --data-dir PATH/TO/DATA/val
其中,--net_id
指定要评估的模型 ID,--dataset
指定数据集类型,--data-dir
指定数据集路径。
eval_torch.py
该脚本用于评估 PyTorch 模型的准确性。可以通过以下命令运行:
python eval_torch.py --net_id mcunet-in2 --dataset imagenet --data-dir PATH/TO/DATA/val
参数与 eval_tflite.py
类似,用于指定模型和数据集。
3. 项目的配置文件介绍
MCUNet 项目的主要配置文件是 requirements.txt
和 setup.py
。
requirements.txt
该文件列出了项目运行所需的 Python 包及其版本。可以通过以下命令安装这些依赖:
pip install -r requirements.txt
setup.py
该文件是项目的安装脚本。可以通过以下命令安装项目:
python setup.py install
该脚本会安装项目及其依赖包,并设置必要的运行环境。
以上是 MCUNet 项目的目录结构、启动文件和配置文件的介绍。通过这些信息,您可以更好地理解和使用该项目。