MCUNet 项目使用教程

MCUNet 项目使用教程

mcunet [NeurIPS 2020] MCUNet: Tiny Deep Learning on IoT Devices; [NeurIPS 2021] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning mcunet 项目地址: https://gitcode.com/gh_mirrors/mc/mcunet

1. 项目目录结构及介绍

MCUNet 项目的目录结构如下:

mcunet/
├── assets/
├── eval_det.py
├── eval_tflite.py
├── eval_torch.py
├── LICENSE
├── README.md
├── requirements.txt
├── setup.py
└── mcunet/
    ├── model_zoo/
    └── ...

目录结构介绍

  • assets/: 存放项目相关的资源文件,如示例图像等。
  • eval_det.py: 用于评估目标检测模型的脚本。
  • eval_tflite.py: 用于评估 TensorFlow Lite 模型的脚本。
  • eval_torch.py: 用于评估 PyTorch 模型的脚本。
  • LICENSE: 项目的开源许可证文件。
  • README.md: 项目的介绍和使用说明。
  • requirements.txt: 项目依赖的 Python 包列表。
  • setup.py: 项目的安装脚本。
  • mcunet/: 项目的主要代码目录,包含模型库和其他相关代码。

2. 项目的启动文件介绍

MCUNet 项目的主要启动文件包括 eval_det.pyeval_tflite.pyeval_torch.py。这些文件分别用于评估不同类型的模型。

eval_det.py

该脚本用于评估目标检测模型。可以通过以下命令运行:

python eval_det.py

该脚本会加载预训练的目标检测模型,并在示例图像上进行预测,并将结果可视化。

eval_tflite.py

该脚本用于评估 TensorFlow Lite 模型的准确性。可以通过以下命令运行:

python eval_tflite.py --net_id mcunet-in2 --dataset imagenet --data-dir PATH/TO/DATA/val

其中,--net_id 指定要评估的模型 ID,--dataset 指定数据集类型,--data-dir 指定数据集路径。

eval_torch.py

该脚本用于评估 PyTorch 模型的准确性。可以通过以下命令运行:

python eval_torch.py --net_id mcunet-in2 --dataset imagenet --data-dir PATH/TO/DATA/val

参数与 eval_tflite.py 类似,用于指定模型和数据集。

3. 项目的配置文件介绍

MCUNet 项目的主要配置文件是 requirements.txtsetup.py

requirements.txt

该文件列出了项目运行所需的 Python 包及其版本。可以通过以下命令安装这些依赖:

pip install -r requirements.txt

setup.py

该文件是项目的安装脚本。可以通过以下命令安装项目:

python setup.py install

该脚本会安装项目及其依赖包,并设置必要的运行环境。


以上是 MCUNet 项目的目录结构、启动文件和配置文件的介绍。通过这些信息,您可以更好地理解和使用该项目。

mcunet [NeurIPS 2020] MCUNet: Tiny Deep Learning on IoT Devices; [NeurIPS 2021] MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning mcunet 项目地址: https://gitcode.com/gh_mirrors/mc/mcunet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗廷国Kenyon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值