SuperGluePretrainedNetwork 项目教程

SuperGluePretrainedNetwork 项目教程

SuperGluePretrainedNetwork SuperGlue: Learning Feature Matching with Graph Neural Networks (CVPR 2020, Oral) SuperGluePretrainedNetwork 项目地址: https://gitcode.com/gh_mirrors/su/SuperGluePretrainedNetwork

1. 项目的目录结构及介绍

SuperGluePretrainedNetwork/
├── assets/
│   └── freiburg_sequence/
├── models/
├── weights/
├── .gitignore
├── LICENSE
├── README.md
├── demo_superglue.py
├── match_pairs.py
├── requirements.txt

目录结构介绍

  • assets/: 包含示例图像序列,用于演示和测试。
  • models/: 包含项目中使用的模型文件。
  • weights/: 包含预训练的权重文件,包括室内和室外模型。
  • .gitignore: Git 忽略文件,指定哪些文件和目录不需要被版本控制。
  • LICENSE: 项目的开源许可证文件。
  • README.md: 项目的介绍文档,包含项目的详细说明和使用方法。
  • demo_superglue.py: 项目的启动文件,用于运行实时特征匹配演示。
  • match_pairs.py: 用于处理图像对并生成匹配结果的脚本。
  • requirements.txt: 项目的依赖文件,列出了运行项目所需的 Python 包。

2. 项目的启动文件介绍

demo_superglue.py

demo_superglue.py 是项目的启动文件,用于运行实时特征匹配演示。该脚本支持从摄像头、IP 摄像头、图像目录或视频文件中读取图像,并进行特征匹配。

主要功能
  • 实时匹配演示: 运行 SuperPoint + SuperGlue 特征匹配,支持从不同来源读取图像。
  • 键盘控制: 支持通过键盘控制更新锚点图像、调整匹配阈值等。
  • 图像缩放: 支持通过命令行参数调整输入图像的尺寸。
使用示例
python demo_superglue.py --input assets/freiburg_sequence/ --output_dir dump_demo_sequence --resize 320 240 --no_display

3. 项目的配置文件介绍

requirements.txt

requirements.txt 文件列出了运行该项目所需的 Python 包及其版本要求。

主要依赖
  • Python 3 >= 3.5
  • PyTorch >= 1.1
  • OpenCV >= 3.4
  • Matplotlib >= 3.1
  • NumPy >= 1.18
安装依赖
pip3 install -r requirements.txt

README.md

README.md 文件是项目的介绍文档,包含项目的详细说明和使用方法。它提供了项目的背景信息、安装步骤、使用示例以及常见问题解答。

主要内容
  • 项目介绍: 介绍 SuperGlue 网络的功能和应用场景。
  • 安装步骤: 详细说明如何安装项目依赖和运行项目。
  • 使用示例: 提供多个使用示例,包括实时匹配演示和图像对匹配。
  • 常见问题: 解答用户可能遇到的问题。

通过以上内容,您可以快速了解并使用 SuperGluePretrainedNetwork 项目。

SuperGluePretrainedNetwork SuperGlue: Learning Feature Matching with Graph Neural Networks (CVPR 2020, Oral) SuperGluePretrainedNetwork 项目地址: https://gitcode.com/gh_mirrors/su/SuperGluePretrainedNetwork

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗廷国Kenyon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值