AutoFDO 项目使用教程
autofdoAutoFDO项目地址:https://gitcode.com/gh_mirrors/au/autofdo
项目介绍
AutoFDO(Automatic Feedback-Directed Optimization)是一个用于仓库规模应用程序的自动反馈导向优化系统。它通过使用perf工具收集样本配置文件,并将其转换为gcov格式,从而跳过传统的仪器化步骤。AutoFDO旨在克服传统FDO模型的高运行时开销、繁琐的双重编译使用模型以及生成代表性训练数据集的困难。
项目快速启动
要快速启动AutoFDO项目,请按照以下步骤操作:
-
克隆项目仓库:
git clone https://github.com/google/autofdo.git cd autofdo
-
创建并进入构建目录:
mkdir build cd build
-
构建LLVM工具:
cmake -DENABLE_TOOL=LLVM -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release .. make -j 4
-
构建AutoFDO工具:
cmake -DENABLE_TOOL=GCOV -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release .. make -j 4
应用案例和最佳实践
AutoFDO已被证明在复杂代码中显示出良好的应用性能提升。例如,在一个包含30,000个元素的实验中,从仅使用-O3优化到使用FDO优化,性能提升了3.46%。在更复杂的代码中,性能提升接近9%。
最佳实践包括:
- 使用perf工具收集样本配置文件。
- 使用AutoFDO工具将perf数据文件转换为gcov格式。
- 避免传统的仪器化步骤,直接使用基于采样的配置文件进行反馈导向优化。
典型生态项目
AutoFDO与以下生态项目紧密相关:
- LLVM:用于编译和优化代码。
- perf:用于收集系统性能数据。
- gcov:用于代码覆盖率分析。
这些工具和项目共同构成了AutoFDO的生态系统,为用户提供了全面的性能优化解决方案。
autofdoAutoFDO项目地址:https://gitcode.com/gh_mirrors/au/autofdo