LiveCodeBench: 大型语言模型代码能力的全面无污染评估

LiveCodeBench: 大型语言模型代码能力的全面无污染评估

LiveCodeBenchOfficial repository for the paper "LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code"项目地址:https://gitcode.com/gh_mirrors/li/LiveCodeBench

1. 项目介绍

LiveCodeBench 是一个专为大型语言模型(LLMs)设计的综合性、无污染评价基准。它致力于评估LLM在编码任务上的能力,涵盖从代码生成到自我修复代码执行、测试输出预测等更广泛的编程相关技能。该项目定期从LeetCode、AtCoder以及CodeForces这三大竞赛平台收集新问题,构建了一个随着时间推移不断更新的问题集,目前收录了发布于2023年5月至2024年5月期间的四百个高质量编程难题。

2. 项目快速启动

要开始使用LiveCodeBench,您首先需要克隆仓库并设置开发环境。以下是快速入门步骤:

# 克隆LiveCodeBench仓库
git clone https://github.com/LiveCodeBench/LiveCodeBench.git
cd LiveCodeBench

# 强烈推荐使用poetry管理依赖项
# 安装poetry(如果尚未安装)
curl -sSL https://install.python-poetry.org | python3 -

# 使用poetry安装项目依赖
poetry install

完成上述步骤后,您将能够运行LiveCodeBench提供的测试或参与代码评估流程。

3. 应用案例和最佳实践

LiveCodeBench的应用主要集中在对LLMs进行复杂且真实的编程挑战评估上。开发者可以利用这个平台来测试和调优自己的语言模型,特别是在以下几个方面实施最佳实践:

  • 自定义场景测试:创建符合特定需求的测试集,以评估LLM在特定编程任务中的表现。
  • 性能对比:通过与其他模型的比较,了解自己模型在生成代码、代码自修复等方面的优势和不足。
  • 模型反馈循环:利用LiveCodeBench的评价结果优化训练数据,提升模型的综合编码能力。

4. 典型生态项目

虽然LiveCodeBench本身是一个独立的项目,但它的存在促进了与一系列相关生态项目的合作和发展,例如其他评估基准工具(如EvalPlus、CruxEval等)和AI辅助编程社区。这些项目共同构成了一个生态系统,旨在推动LLMs在代码领域的应用边界,促进技术交流与进步。

开发者和研究者可以通过对比LiveCodeBench与其他如BigCode Models Leaderboard、InfiCoder-Eval等 leaderboard上的表现,进一步理解他们的模型在行业内的定位,并探索不同的应用场景和最佳实践策略。


此教程提供了一个起点,引导您如何开始利用LiveCodeBench来评估您的大型语言模型。记住,深入了解每个功能和参数调整,将帮助您最大化LiveCodeBench的潜力,为您的项目带来深刻洞察。

LiveCodeBenchOfficial repository for the paper "LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code"项目地址:https://gitcode.com/gh_mirrors/li/LiveCodeBench

### LiveCodeBench 数据集介绍 LiveCodeBench 是一个专门用于评估大型语言模型编码能力的数据集,旨在提供全面且无污染的评测环境[^1]。该数据集特别强调避免训练和测试过程中可能出现的数据泄露问题,从而确保评估结果的真实性和可靠性。 #### 数据源与时间范围 为了构建这个独特的数据集,从2023年5月至2024年5月期间,在三个主要编程竞赛平台上收集了总计511个题目,这些平台分别是 LeetCode、AtCoder 和 CodeForces。通过这种方式获取的新鲜题目能够有效防止因重复使用旧题而导致的潜在偏差[^2]。 #### 场景设计 基于上述收集到的比赛题目,创建了一系列多样化的应用场景,涵盖了不同难度级别和技术领域的要求。这种多维度的设计使得研究人员可以更精确地衡量目标模型在实际开发环境中可能遇到的各种挑战下的表现情况。 ### 使用方法指导 对于希望利用 LiveCodeBench 进行研究或产品优化的人来说,官方提供了详细的入门指南文档[^3]。以下是几个关键步骤: - **安装依赖项** 首先需要克隆仓库并按照README文件中的指示完成必要的软件包安装操作。 ```bash git clone https://gitcode.com/gh_mirrors/li/LiveCodeBench.git cd LiveCodeBench pip install -r requirements.txt ``` - **加载数据** 接下来可以通过 Python 脚本轻松导入所需的任务集合。具体实现方式取决于所选框架和个人偏好;这里给出了一种通用的方法作为参考: ```python import json with open('data/problems.json', 'r') as f: problems = json.load(f) print(problems[:5]) # 显示前五个条目以供预览 ``` - **运行评估** 利用内置工具执行自动化评分流程,支持多种配置选项以便适应不同的实验需求。更多高级特性可通过查阅项目主页上的 API 文档获得更多信息[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邹岩讳Sally

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值