https://arxiv.org/pdf/2403.07974
LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code
LiveCodeBench:对大型语言模型进行代码相关应用的全面且无污染评估
摘要
应用于代码相关应用的大型语言模型(LLMs)已经成为一个突出的领域,吸引了学术界和工业界的极大兴趣。然而,随着新的和改进的LLMs的发展,现有的评估基准(例如,HumanEval、MBPP)不再足以评估它们的能力。在这项工作中,我们提出了LiveCodeBench,这是一个全面且无污染的LLMs代码评估方法,它从三个竞技平台(即LeetCode、AtCoder和CodeForces)的比赛活动中随时间收集新问题。值得注意的是,我们的基准测试还关注了更广泛的代码相关能力,如自我修复、代码执行和测试输出预测,不仅仅是代码生成。目前,LiveCodeBench托管了2023年5月至2024年5月期间发布的五百多个编程问题。我们已经在LiveCodeBench上评估了18个基础LLMs和34个指令调整的