WTW-Dataset 开源项目使用教程
1. 项目介绍
WTW-Dataset 是一个用于表格检测和表格结构识别的官方实现项目。该项目基于 ICCV 2021 论文 "Parsing Table Structures in the Wild" 构建,旨在提供一个包含多种挑战性案例的表格数据集。WTW-Dataset 涵盖了 7 种不同的挑战性案例,包括倾斜表格、曲线表格、遮挡或模糊表格、极端宽高比表格、叠加表格、多色表格以及不规则表格。数据集包含 14581 张图像,并提供了详细的标注信息。
2. 项目快速启动
2.1 克隆项目
首先,克隆 WTW-Dataset 项目到本地:
git clone https://github.com/wangwen-whu/WTW-Dataset.git
cd WTW-Dataset
2.2 安装依赖
确保你已经安装了 Python 环境,然后安装所需的依赖包:
pip install -r requirements.txt
2.3 数据转换
WTW-Dataset 提供了将 XML 格式数据转换为其他常见格式的脚本。以下是一些示例:
2.3.1 将 XML 转换为 COCO 格式
python xmltococo.py --input_dir path/to/xml/files --output_dir path/to/output/json
2.3.2 将 XML 转换为 HTML 格式
python xmltohtml.py --input_dir path/to/xml/files --output_dir path/to/output/html
3. 应用案例和最佳实践
3.1 表格检测
WTW-Dataset 可以用于训练和评估表格检测模型。以下是一个简单的应用案例:
import cv2
import xml.etree.ElementTree as ET
def detect_tables(image_path, xml_path):
image = cv2.imread(image_path)
tree = ET.parse(xml_path)
root = tree.getroot()
for table in root.findall('table'):
bbox = table.find('bbox')
x1, y1, x2, y2 = map(int, bbox.text.split(','))
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.imshow('Detected Tables', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 示例调用
detect_tables('path/to/image.jpg', 'path/to/annotation.xml')
3.2 表格结构识别
WTW-Dataset 还可以用于表格结构识别任务。以下是一个简单的应用案例:
def recognize_table_structure(xml_path):
tree = ET.parse(xml_path)
root = tree.getroot()
for table in root.findall('table'):
print(f"Table ID: {table.find('id').text}")
for cell in table.findall('cell'):
print(f"Cell: {cell.find('bbox').text}, Start: {cell.find('start').text}, End: {cell.find('end').text}")
# 示例调用
recognize_table_structure('path/to/annotation.xml')
4. 典型生态项目
4.1 Cycle-Centernet
Cycle-Centernet 是 WTW-Dataset 中使用的一个表格检测模型。尽管模型代码未公开,但可以通过提供的在线测试链接进行测试。
4.2 其他表格处理工具
WTW-Dataset 可以与其他表格处理工具结合使用,例如 OpenCV 用于图像处理,Pandas 用于表格数据分析等。
通过以上步骤,你可以快速上手 WTW-Dataset 项目,并将其应用于表格检测和结构识别任务中。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考