ChineseBERT 使用教程
项目地址:https://gitcode.com/gh_mirrors/ch/ChineseBert
项目介绍
ChineseBERT 是一个中文预训练语言模型,通过结合汉字字形(Glyph)和拼音(Pinyin)信息来增强模型的预训练效果。该项目由 ShannonAI 开发,并在 ACL 2021 会议上发表。ChineseBERT 能够更好地捕捉上下文语义,并解决中文中的多音字歧义问题。
项目快速启动
安装依赖
首先,确保你已经安装了必要的 Python 库:
pip install -r requirements.txt
下载模型
你可以从以下链接下载预训练的 ChineseBERT 模型:
加载模型
以下是一个快速加载 ChineseBERT 模型的示例代码:
from models.modeling_glycebert import GlyceBertForMaskedLM
# 设置模型路径
CHINESEBERT_PATH = 'path_to_your_downloaded_model'
# 加载模型
chinese_bert = GlyceBertForMaskedLM.from_pretrained(CHINESEBERT_PATH)
print(chinese_bert)
应用案例和最佳实践
掩码词填充
ChineseBERT 可以用于掩码词填充任务,以下是一个示例代码:
from datasets.bert_dataset import BertDataset
from models.modeling_glycebert import GlyceBertModel
# 初始化分词器
tokenizer = BertDataset(CHINESEBERT_PATH)
# 加载模型
chinese_bert = GlyceBertModel.from_pretrained(CHINESEBERT_PATH)
# 示例句子
sentence = "今天天气很[MASK]。"
# 分词
inputs = tokenizer(sentence, return_tensors='pt')
# 模型预测
outputs = chinese_bert(**inputs)
predictions = outputs.logits.argmax(dim=-1)
# 解码预测结果
predicted_token = tokenizer.decode(predictions[0])
print(predicted_token)
句子表示
ChineseBERT 也可以用于获取句子的向量表示,以下是一个示例代码:
# 继续使用上面的模型和分词器
# 示例句子
sentence = "这是一个测试句子。"
# 分词
inputs = tokenizer(sentence, return_tensors='pt')
# 获取句子表示
with torch.no_grad():
outputs = chinese_bert(**inputs)
# 获取句子的向量表示
sentence_embedding = outputs.last_hidden_state.mean(dim=1)
print(sentence_embedding)
典型生态项目
ChineseBERT 可以与其他中文自然语言处理(NLP)项目结合使用,例如:
- 中文文本分类:使用 ChineseBERT 提取特征,然后进行文本分类。
- 命名实体识别(NER):利用 ChineseBERT 的强大表示能力进行实体识别。
- 问答系统:结合 ChineseBERT 和问答数据集,构建高效的中文问答系统。
通过这些应用案例和最佳实践,你可以更好地理解和利用 ChineseBERT 在中文 NLP 任务中的优势。