深入解析OpenAI Agents Python项目中的智能体构建

深入解析OpenAI Agents Python项目中的智能体构建

openai-agents-python A lightweight, powerful framework for multi-agent workflows openai-agents-python 项目地址: https://gitcode.com/gh_mirrors/op/openai-agents-python

什么是智能体(Agent)

在OpenAI Agents Python项目中,智能体是应用程序的核心构建块。一个智能体本质上是一个配置了指令和工具的大型语言模型(LLM)。它能够理解自然语言指令,调用各种工具完成任务,并根据上下文做出智能决策。

智能体的基础配置

构建一个智能体通常需要配置以下几个关键属性:

  1. 指令(instructions):也称为开发者消息或系统提示,用于指导智能体的行为模式
  2. 模型(model):指定使用哪个LLM模型,并可配置模型调优参数
  3. 工具(tools):智能体可以调用的功能模块
from agents import Agent, ModelSettings, function_tool

@function_tool
def get_weather(city: str) -> str:
    return f"The weather in {city} is sunny"

agent = Agent(
    name="Haiku agent",
    instructions="Always respond in haiku form",
    model="o3-mini",
    tools=[get_weather],
)

上下文(Context)机制

智能体支持泛型的上下文类型,这是一种依赖注入工具。上下文对象包含了智能体运行所需的所有依赖和状态信息。

@dataclass
class UserContext:
    uid: str
    is_pro_user: bool

    async def fetch_purchases() -> list[Purchase]:
        return ...

agent = Agent[UserContext](
    ...,
)

输出类型控制

默认情况下,智能体产生纯文本输出。但你可以通过output_type参数指定输出类型,常见的选择是使用Pydantic对象。

from pydantic import BaseModel

class CalendarEvent(BaseModel):
    name: str
    date: str
    participants: list[str]

agent = Agent(
    name="Calendar extractor",
    instructions="Extract calendar events from text",
    output_type=CalendarEvent,
)

任务委派(Handoffs)机制

Handoffs是一种强大的模式,允许智能体将特定任务委派给专门的子智能体处理。

booking_agent = Agent(...)
refund_agent = Agent(...)

triage_agent = Agent(
    name="Triage agent",
    instructions="根据用户问题委派给合适的专业智能体",
    handoffs=[booking_agent, refund_agent],
)

动态指令

除了静态指令,还可以通过函数提供动态指令,根据运行时上下文生成不同的提示。

def dynamic_instructions(context, agent) -> str:
    return f"用户名为{context.context.name},请根据其身份提供帮助"

agent = Agent[UserContext](
    name="动态指令智能体",
    instructions=dynamic_instructions,
)

生命周期钩子(Hooks)

通过继承AgentHooks类并重写感兴趣的方法,可以观察和干预智能体的生命周期事件。

防护机制(Guardrails)

防护机制允许在智能体运行的同时对用户输入进行检查和验证,例如筛选相关性问题。

智能体克隆

使用clone()方法可以复制智能体,并选择性修改部分属性。

pirate_agent = Agent(
    name="Pirate",
    instructions="用海盗风格写作",
)

robot_agent = pirate_agent.clone(
    name="Robot",
    instructions="用机器人风格写作",
)

强制工具使用

通过设置ModelSettings.tool_choice可以控制智能体是否必须使用工具:

  1. auto:由LLM自主决定
  2. required:必须使用工具
  3. none:禁止使用工具
  4. 指定具体工具名称:强制使用特定工具

为防止无限循环,框架会在工具调用后自动将tool_choice重置为"auto"。也可以通过Agent.tool_use_behavior="stop_on_first_tool"设置让智能体在首次工具调用后直接结束。

最佳实践建议

  1. 对于复杂任务,建议采用主智能体+专业子智能体的分层架构
  2. 合理使用上下文机制传递状态信息
  3. 对关键操作实施防护机制
  4. 利用动态指令提升智能体的适应性
  5. 通过生命周期钩子实现监控和日志记录

通过灵活组合这些特性,开发者可以构建出功能强大且可靠的智能体应用。

openai-agents-python A lightweight, powerful framework for multi-agent workflows openai-agents-python 项目地址: https://gitcode.com/gh_mirrors/op/openai-agents-python

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

戴玫芹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值