深入解析OpenAI Agents Python项目中的智能体构建
什么是智能体(Agent)
在OpenAI Agents Python项目中,智能体是应用程序的核心构建块。一个智能体本质上是一个配置了指令和工具的大型语言模型(LLM)。它能够理解自然语言指令,调用各种工具完成任务,并根据上下文做出智能决策。
智能体的基础配置
构建一个智能体通常需要配置以下几个关键属性:
- 指令(instructions):也称为开发者消息或系统提示,用于指导智能体的行为模式
- 模型(model):指定使用哪个LLM模型,并可配置模型调优参数
- 工具(tools):智能体可以调用的功能模块
from agents import Agent, ModelSettings, function_tool
@function_tool
def get_weather(city: str) -> str:
return f"The weather in {city} is sunny"
agent = Agent(
name="Haiku agent",
instructions="Always respond in haiku form",
model="o3-mini",
tools=[get_weather],
)
上下文(Context)机制
智能体支持泛型的上下文类型,这是一种依赖注入工具。上下文对象包含了智能体运行所需的所有依赖和状态信息。
@dataclass
class UserContext:
uid: str
is_pro_user: bool
async def fetch_purchases() -> list[Purchase]:
return ...
agent = Agent[UserContext](
...,
)
输出类型控制
默认情况下,智能体产生纯文本输出。但你可以通过output_type
参数指定输出类型,常见的选择是使用Pydantic对象。
from pydantic import BaseModel
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
agent = Agent(
name="Calendar extractor",
instructions="Extract calendar events from text",
output_type=CalendarEvent,
)
任务委派(Handoffs)机制
Handoffs是一种强大的模式,允许智能体将特定任务委派给专门的子智能体处理。
booking_agent = Agent(...)
refund_agent = Agent(...)
triage_agent = Agent(
name="Triage agent",
instructions="根据用户问题委派给合适的专业智能体",
handoffs=[booking_agent, refund_agent],
)
动态指令
除了静态指令,还可以通过函数提供动态指令,根据运行时上下文生成不同的提示。
def dynamic_instructions(context, agent) -> str:
return f"用户名为{context.context.name},请根据其身份提供帮助"
agent = Agent[UserContext](
name="动态指令智能体",
instructions=dynamic_instructions,
)
生命周期钩子(Hooks)
通过继承AgentHooks
类并重写感兴趣的方法,可以观察和干预智能体的生命周期事件。
防护机制(Guardrails)
防护机制允许在智能体运行的同时对用户输入进行检查和验证,例如筛选相关性问题。
智能体克隆
使用clone()
方法可以复制智能体,并选择性修改部分属性。
pirate_agent = Agent(
name="Pirate",
instructions="用海盗风格写作",
)
robot_agent = pirate_agent.clone(
name="Robot",
instructions="用机器人风格写作",
)
强制工具使用
通过设置ModelSettings.tool_choice
可以控制智能体是否必须使用工具:
auto
:由LLM自主决定required
:必须使用工具none
:禁止使用工具- 指定具体工具名称:强制使用特定工具
为防止无限循环,框架会在工具调用后自动将tool_choice
重置为"auto"。也可以通过Agent.tool_use_behavior="stop_on_first_tool"
设置让智能体在首次工具调用后直接结束。
最佳实践建议
- 对于复杂任务,建议采用主智能体+专业子智能体的分层架构
- 合理使用上下文机制传递状态信息
- 对关键操作实施防护机制
- 利用动态指令提升智能体的适应性
- 通过生命周期钩子实现监控和日志记录
通过灵活组合这些特性,开发者可以构建出功能强大且可靠的智能体应用。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考