DISC-MedLLM 使用教程

DISC-MedLLM 使用教程

DISC-MedLLM Repository of DISC-MedLLM, it is a comprehensive solution that leverages Large Language Models (LLMs) to provide accurate and truthful medical response in end-to-end conversational healthcare services. DISC-MedLLM 项目地址: https://gitcode.com/gh_mirrors/di/DISC-MedLLM

1. 项目介绍

DISC-MedLLM 是一个由复旦大学数据智能与社会计算实验室(Fudan-DISC)开发的开源项目,旨在利用大型语言模型(LLMs)为端到端的医疗健康对话提供准确和真实的医疗响应。该模型通过整合医学知识图谱和真实医患对话数据,具备丰富的专业知识、多轮对话的问询能力以及对齐人类偏好的回复等特点,能够满足用户在疾病问诊和治疗方案咨询等方面的需求。

2. 项目快速启动

环境准备

首先,确保您的环境中已经安装了 Python。然后,通过以下命令安装项目所需的依赖:

pip install -r requirements.txt

模型加载与推理

使用 Hugging Face 的 transformers 模块加载 DISC-MedLLM 模型并进行推理:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig

# 加载 tokenizer
tokenizer = AutoTokenizer.from_pretrained("Flmc/DISC-MedLLM", use_fast=False, trust_remote_code=True)

# 加载模型
model = AutoModelForCausalLM.from_pretrained(
    "Flmc/DISC-MedLLM",
    device_map="auto",
    torch_dtype=torch.float16,
    trust_remote_code=True
)

# 设置生成配置
model.generation_config = GenerationConfig.from_pretrained("Flmc/DISC-MedLLM")

# 创建对话
messages = [{"role": "user", "content": "我感觉自己颈椎非常不舒服,每天睡醒都会头痛"}]

# 获取模型回复
response = model.chat(tokenizer, messages)

# 打印回复
print(response)

运行命令行 Demo

运行以下命令启动命令行 Demo:

python cli_demo.py

运行网页版 Demo

运行以下命令启动网页版 Demo:

streamlit run web_demo.py --server.port 8888

3. 应用案例和最佳实践

  • 疾病问诊:DISC-MedLLM 可以根据用户的症状描述,提供相应的疾病诊断建议。
  • 治疗方案咨询:用户可以咨询 DISC-MedLLM 有关疾病的治疗方案,模型会提供基于医学知识的建议。

4. 典型生态项目

目前,DISC-MedLLM 的生态系统尚未广泛发展,但以下是一些可能的典型生态项目:

  • 医疗聊天机器人:集成 DISC-MedLLM 模型的聊天机器人,为患者提供24/7的医疗咨询服务。
  • 电子病历系统:将 DISC-MedLLM 模型应用于电子病历系统,辅助医生进行诊断和治疗决策。

DISC-MedLLM Repository of DISC-MedLLM, it is a comprehensive solution that leverages Large Language Models (LLMs) to provide accurate and truthful medical response in end-to-end conversational healthcare services. DISC-MedLLM 项目地址: https://gitcode.com/gh_mirrors/di/DISC-MedLLM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

葛习可Mona

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值