Y-Net: 用于乳腺活组织切片图像的分割与分类
1. 项目基础介绍及主要编程语言
Y-Net 是一个开源项目,专注于医学图像处理领域,特别是乳腺活组织切片图像的联合分割与分类。该项目旨在为乳腺癌的诊断提供辅助工具,通过深度学习技术自动识别和分类图像中的不同组织类型。项目主要使用 Python 编程语言,依赖于 PyTorch 深度学习框架以及 OpenCV 库。
2. 项目核心功能
Y-Net 的核心功能包括:
- 图像分割:项目第一阶段(stage1)专注于对乳腺活组织切片图像进行分割,能够区分出不同的组织结构,如腺体、基质等。
- 图像分类:在第二阶段(stage2),项目进一步将分割结果与分类任务结合,不仅识别出不同的组织类型,还能对乳腺图像进行诊断分类,如区分良性与恶性组织。
- 性能评估:项目还包含了评估模块(seg_eval),用于评价分割算法的准确性,确保诊断的可靠性。
3. 项目最近更新的功能
根据项目最新的更新,以下是一些新增或改进的功能:
- 代码优化:对已有的代码进行了优化,提高了算法的执行效率和准确性。
- 兼容性增强:项目更新了对不同版本 Python、PyTorch 和 OpenCV 的兼容性,确保更多用户能够顺利运行代码。
- 文档完善:项目的文档得到了进一步的完善,提供了更详细的安装指南和使用说明,降低了用户使用项目的门槛。
这些更新使得 Y-Net 项目更加稳定和易用,为乳腺癌诊断的研究和应用提供了有力的工具。