Y-Net: 用于乳腺活组织切片图像的分割与分类

Y-Net: 用于乳腺活组织切片图像的分割与分类

YNet Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images YNet 项目地址: https://gitcode.com/gh_mirrors/yn/YNet

1. 项目基础介绍及主要编程语言

Y-Net 是一个开源项目,专注于医学图像处理领域,特别是乳腺活组织切片图像的联合分割与分类。该项目旨在为乳腺癌的诊断提供辅助工具,通过深度学习技术自动识别和分类图像中的不同组织类型。项目主要使用 Python 编程语言,依赖于 PyTorch 深度学习框架以及 OpenCV 库。

2. 项目核心功能

Y-Net 的核心功能包括:

  • 图像分割:项目第一阶段(stage1)专注于对乳腺活组织切片图像进行分割,能够区分出不同的组织结构,如腺体、基质等。
  • 图像分类:在第二阶段(stage2),项目进一步将分割结果与分类任务结合,不仅识别出不同的组织类型,还能对乳腺图像进行诊断分类,如区分良性与恶性组织。
  • 性能评估:项目还包含了评估模块(seg_eval),用于评价分割算法的准确性,确保诊断的可靠性。

3. 项目最近更新的功能

根据项目最新的更新,以下是一些新增或改进的功能:

  • 代码优化:对已有的代码进行了优化,提高了算法的执行效率和准确性。
  • 兼容性增强:项目更新了对不同版本 Python、PyTorch 和 OpenCV 的兼容性,确保更多用户能够顺利运行代码。
  • 文档完善:项目的文档得到了进一步的完善,提供了更详细的安装指南和使用说明,降低了用户使用项目的门槛。

这些更新使得 Y-Net 项目更加稳定和易用,为乳腺癌诊断的研究和应用提供了有力的工具。

YNet Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images YNet 项目地址: https://gitcode.com/gh_mirrors/yn/YNet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马安柯Lorelei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值