开源项目LLM-App使用教程

开源项目LLM-App使用教程

llm-appLLM App is a production framework for building and serving AI applications and LLM-enabled real-time data pipelines.项目地址:https://gitcode.com/gh_mirrors/ll/llm-app

项目介绍

LLM-App是一个基于Pathway框架的开源项目,旨在帮助开发者快速构建和部署大型语言模型(LLM)应用。该项目利用了OpenAI、Anthropic、Gemini等模型,并支持开源模型如LLaMA。LLM-App提供了一系列工具和示例,帮助开发者从代码仓库到电子邮件收件箱等多个领域应用LLM。

项目快速启动

环境准备

在开始之前,请确保您已经安装了Python和Git。然后,克隆项目仓库并安装依赖:

git clone https://github.com/pathwaycom/llm-app.git
cd llm-app
pip install -r requirements.txt

运行示例应用

以下是一个简单的示例,展示如何运行一个基本的LLM应用:

import pathway as pw
from pathway.llm import OpenAILLM

# 初始化LLM模型
llm = OpenAILLM(api_key="your_openai_api_key")

# 定义一个简单的查询
query = "介绍一下Pathway框架"

# 获取响应
response = llm.generate(query)
print(response)

应用案例和最佳实践

案例一:聊天机器人

LLM-App可以用于构建聊天机器人,提供自然语言交互功能。以下是一个简单的聊天机器人示例:

from pathway.llm import Chatbot

chatbot = Chatbot(llm)

# 与聊天机器人交互
while True:
    user_input = input("你: ")
    response = chatbot.chat(user_input)
    print(f"聊天机器人: {response}")

案例二:智能搜索助手

结合搜索引擎和LLM,可以构建一个智能搜索助手,提供精准的查询结果:

from pathway.llm import SearchAssistant

search_assistant = SearchAssistant(llm)

query = "Python编程最佳实践"
results = search_assistant.search(query)
for result in results:
    print(result)

典型生态项目

项目一:Local Lllama-3 with RAG

Local Lllama-3是一个本地运行的LLM应用,利用Retrieval Augmented Generation(RAG)技术,提供100%免费和离线功能。

项目二:AI Investment Agent

AI Investment Agent是一个AI投资代理,可以比较两只股票的表现并生成详细报告。

项目三:AI Journalist Agent

AI Journalist Agent是一个AI记者代理,可以自动生成新闻报道。

通过这些生态项目,开发者可以更深入地了解和应用LLM技术,构建更多创新的应用。

llm-appLLM App is a production framework for building and serving AI applications and LLM-enabled real-time data pipelines.项目地址:https://gitcode.com/gh_mirrors/ll/llm-app

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

内容概要:该论文深入研究了液压挖掘机动臂下降势能回收技术,旨在解决传统液压挖掘机能耗高的问题。提出了一种新型闭式回路势能回收系统,利用模糊PI自整定控制算法控制永磁无刷直流电动机,实现了变转速容积调速控制,消除了节流和溢流损失。通过建立数学模型和仿真模型,分析了不同负载下的系统性能,并开发了试验平台验证系统的高效性和节能效果。研究还涵盖了执行机构能量分布分析、系统元件参数匹配及电机控制性能优化,为液压挖掘机节能技术提供了理论和实践依据。此外,通过实验验证,该系统相比传统方案可降低28%的能耗,控制系统响应时间缩短40%,为工程机械的绿色化、智能化发展提供了关键技术支撑。 适合人群:从事工程机械设计、制造及维护的工程师和技术人员,以及对液压系统节能技术感兴趣的科研人员。 使用场景及目标:①理解液压挖掘机闭式回路动臂势能回收系统的原理和优势;②掌握模糊PI自整定控制算法的具体实现;③学习如何通过理论建模、仿真和实验验证来评估和优化液压系统的性能。 其他说明:此研究不仅提供了详细的理论分析和数学建模,还给出了具体的仿真代码和实验数据,便于读者在实际工作中进行参考和应用。研究结果表明,该系统不仅能显著提高能源利用效率,还能延长设备使用寿命,降低维护成本,具有重要的工程应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲍瑛嫚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值