Auto-PyTorch 开发者指南

Auto-PyTorch 开发者指南

Auto-PyTorch Automatic architecture search and hyperparameter optimization for PyTorch Auto-PyTorch 项目地址: https://gitcode.com/gh_mirrors/au/Auto-PyTorch

1. 项目介绍

Auto-PyTorch 是一个自动机器学习(AutoML)框架,旨在优化神经网络架构和训练超参数,从而实现深度学习的完全自动化。它主要由 Freiburg 和 Hannover 的 AutoML 研究小组开发,支持处理表格数据(分类、回归)和时间序列数据(预测)。

Auto-PyTorch 结合了传统的机器学习管道优化和神经架构搜索的优势,通过使用 SMAC 优化包来提高效率、稳定性和易用性。

2. 项目快速启动

在开始使用 Auto-PyTorch 之前,请确保已经安装了必要的依赖项。以下是通过 PyPI 安装 Auto-PyTorch 的命令:

pip install autoPyTorch

如果需要使用时间序列预测功能,还需要安装额外的依赖:

pip install autoPyTorch[forecasting]

以下是一个简单的示例,展示如何使用 Auto-PyTorch 进行表格数据分类任务:

from autoPyTorch.api.tabular_classification import TabularClassificationTask
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据集
X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

# 初始化 Auto-PyTorch API
api = TabularClassificationTask()

# 在给定数据上搜索最优模型
api.search(
    X_train=X_train,
    y_train=y_train,
    X_test=X_test,
    y_test=y_test,
    optimize_metric='accuracy',
    total_walltime_limit=300,
    func_eval_time_limit_secs=50
)

# 使用最优模型进行预测
y_pred = api.predict(X_test)

# 计算并打印准确率
score = api.score(y_pred, y_test)
print(f"Accuracy score: {score}")

3. 应用案例和最佳实践

Auto-PyTorch 可以应用于多种场景,以下是一些使用案例:

  • 表格数据分类:Auto-PyTorch 可以自动选择和优化适合表格数据的模型。
  • 时间序列预测:使用 Auto-PyTorch 可以对时间序列数据进行高效的预测。

最佳实践建议:

  • 在开始搜索前,确保数据已经过适当的预处理。
  • 根据任务需求调整超参数预算和函数评估时间限制。
  • 使用交叉验证或保留法来评估模型性能。

4. 典型生态项目

Auto-PyTorch 是 AutoML 生态系统中的一部分,以下是与 Auto-PyTorch 相关的一些典型项目:

  • Auto-PyTorch Time Series Forecasting:专注于时间序列预测的 Auto-PyTorch 版本。
  • AutoGluon:另一个由亚马逊开发的 AutoML 框架,支持多种机器学习任务。
  • H2O.ai:一个开源的机器学习平台,提供自动模型选择和优化功能。

以上是 Auto-PyTorch 的基本指南,希望能够帮助您快速上手并有效地使用这个强大的 AutoML 工具。

Auto-PyTorch Automatic architecture search and hyperparameter optimization for PyTorch Auto-PyTorch 项目地址: https://gitcode.com/gh_mirrors/au/Auto-PyTorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乌想炳Todd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值