OK-Robot:零样本模块化家居机器人框架

OK-Robot:零样本模块化家居机器人框架

ok-robot An open, modular framework for zero-shot, language conditioned pick-and-drop tasks in arbitrary homes. ok-robot 项目地址: https://gitcode.com/gh_mirrors/ok/ok-robot

项目介绍

OK-Robot 是一个零样本模块化框架,旨在将最先进的导航和操作模型有效结合,以在真实家庭环境中执行拾取和放置任务。该项目由Peiqi Liu、Yaswanth Orru、Jay Vakil、Chris Paxton、Mahi Shafiuallah和Lerrel Pinto等研究人员共同开发。OK-Robot在10个真实家庭中测试了170多个物体,总体成功率达到58.5%。

项目技术分析

硬件要求

  • iPhone Pro:配备LiDAR传感器,用于环境扫描。
  • Hello Robot Stretch:配备Dex Wrist,用于执行操作任务。
  • 工作站:配备GPU,用于运行预训练模型。

软件要求

  • Python 3.9
  • Record3D:版本大于1.18.0,用于数据记录。
  • CloudCompare:用于点云处理。

安装步骤

  1. 获取Anygrasp的许可证和检查点。
  2. 在工作站上安装必要的运行环境。
  3. 验证工作站安装。
  4. 在机器人上安装必要的软件包。
  5. 获取新的校准URDF文件。

项目及技术应用场景

OK-Robot适用于需要自动化拾取和放置任务的场景,特别是在家庭环境中。例如:

  • 智能家居:自动整理物品、递送物品。
  • 辅助生活:帮助老年人或行动不便者完成日常任务。
  • 物流仓储:在仓库中自动分拣物品。

项目特点

零样本学习

OK-Robot采用零样本学习技术,无需特定任务的训练数据,即可在新的环境中执行任务。

模块化设计

项目采用模块化设计,易于扩展和集成新的功能模块,如导航、操作和错误恢复。

高成功率

在10个真实家庭中测试,成功率达到58.5%,显示出其在实际应用中的潜力。

开源社区支持

项目鼓励社区贡献,未来计划改进文档、增加错误检测和恢复功能,并集成开源抓取感知模型。

总结

OK-Robot是一个具有高度潜力的开源项目,适用于多种家居自动化任务。其零样本学习和模块化设计使其在不同环境中具有广泛的应用前景。我们鼓励开发者加入社区,共同推动这一项目的发展。


参考文献

@article{liu2024okrobot,
  title={OK-Robot: What Really Matters in Integrating Open-Knowledge Models for Robotics},
  author={Liu, Peiqi and Orru, Yaswanth and Paxton, Chris and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
  journal={arXiv preprint arXiv:2401.12202},
  year={2024}
}

项目链接OK-Robot GitHub

ok-robot An open, modular framework for zero-shot, language conditioned pick-and-drop tasks in arbitrary homes. ok-robot 项目地址: https://gitcode.com/gh_mirrors/ok/ok-robot

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陶真蔷Scott

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值