OK-Robot:零样本模块化家居机器人框架
项目介绍
OK-Robot 是一个零样本模块化框架,旨在将最先进的导航和操作模型有效结合,以在真实家庭环境中执行拾取和放置任务。该项目由Peiqi Liu、Yaswanth Orru、Jay Vakil、Chris Paxton、Mahi Shafiuallah和Lerrel Pinto等研究人员共同开发。OK-Robot在10个真实家庭中测试了170多个物体,总体成功率达到58.5%。
项目技术分析
硬件要求
- iPhone Pro:配备LiDAR传感器,用于环境扫描。
- Hello Robot Stretch:配备Dex Wrist,用于执行操作任务。
- 工作站:配备GPU,用于运行预训练模型。
软件要求
- Python 3.9
- Record3D:版本大于1.18.0,用于数据记录。
- CloudCompare:用于点云处理。
安装步骤
- 获取Anygrasp的许可证和检查点。
- 在工作站上安装必要的运行环境。
- 验证工作站安装。
- 在机器人上安装必要的软件包。
- 获取新的校准URDF文件。
项目及技术应用场景
OK-Robot适用于需要自动化拾取和放置任务的场景,特别是在家庭环境中。例如:
- 智能家居:自动整理物品、递送物品。
- 辅助生活:帮助老年人或行动不便者完成日常任务。
- 物流仓储:在仓库中自动分拣物品。
项目特点
零样本学习
OK-Robot采用零样本学习技术,无需特定任务的训练数据,即可在新的环境中执行任务。
模块化设计
项目采用模块化设计,易于扩展和集成新的功能模块,如导航、操作和错误恢复。
高成功率
在10个真实家庭中测试,成功率达到58.5%,显示出其在实际应用中的潜力。
开源社区支持
项目鼓励社区贡献,未来计划改进文档、增加错误检测和恢复功能,并集成开源抓取感知模型。
总结
OK-Robot是一个具有高度潜力的开源项目,适用于多种家居自动化任务。其零样本学习和模块化设计使其在不同环境中具有广泛的应用前景。我们鼓励开发者加入社区,共同推动这一项目的发展。
参考文献
@article{liu2024okrobot,
title={OK-Robot: What Really Matters in Integrating Open-Knowledge Models for Robotics},
author={Liu, Peiqi and Orru, Yaswanth and Paxton, Chris and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
journal={arXiv preprint arXiv:2401.12202},
year={2024}
}
项目链接:OK-Robot GitHub