MFF-pytorch 项目使用教程

MFF-pytorch 项目使用教程

MFF-pytorch Motion Fused Frames implementation in PyTorch, codes and pretrained models. MFF-pytorch 项目地址: https://gitcode.com/gh_mirrors/mf/MFF-pytorch

1. 项目介绍

MFF-pytorch 是一个基于 PyTorch 实现的 Motion Fused Frames (MFFs) 项目,旨在通过数据级融合策略提升手势识别的准确性。该项目是基于论文《Motion Fused Frames: Data Level Fusion Strategy for Hand Gesture Recognition》的实现,提供了代码和预训练模型。

主要功能

  • 数据级融合策略:通过融合运动和颜色信息,提升手势识别的准确性。
  • 预训练模型:提供了预训练模型,方便用户快速上手和验证效果。
  • 多种数据集支持:支持 Jester、NVIDIA 动态手势数据集和 ChaLearn LAP IsoGD 数据集。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了 Python 3.7.4 和 PyTorch 1.5.0。你可以使用 Conda 创建虚拟环境并安装依赖:

# 克隆项目
git clone https://github.com/okankop/MFF-pytorch.git
cd MFF-pytorch

# 创建虚拟环境并安装依赖
conda create -n MFF python=3.7.4
conda activate MFF
pip install -r requirements.txt

2.2 数据准备

下载 Jester 数据集或 NVIDIA 动态手势数据集或 ChaLearn LAP IsoGD 数据集,并将其解压缩到同一文件夹中。然后使用 process_dataset.py 生成训练、验证和测试的索引文件。

# 假设数据集路径如下
~/MFF-pytorch/datasets/jester/

# 生成索引文件
python process_dataset.py

2.3 模型训练

以下是训练 4-segment 网络的示例代码,使用 3 个光流帧和 1 个颜色帧(4-MFFs-3f1c 架构):

python main.py jester RGBFlow --arch BNInception --num_segments 4 \
--consensus_type MLP --num_motion 3 --batch-size 32

2.4 模型测试

使用预训练模型进行测试:

python test_models.py jester RGBFlow pretrained_models/MFF_jester_RGBFlow_BNInception_segment4_3f1c_best.pth.tar \
--arch BNInception --consensus_type MLP --test_crops 1 --num_motion 3 --test_segments 4

3. 应用案例和最佳实践

3.1 手势识别

MFF-pytorch 项目在手势识别任务中表现出色,特别是在 Jester 数据集上。通过融合运动和颜色信息,模型能够更准确地识别复杂的手势动作。

3.2 视频分析

除了手势识别,MFF-pytorch 还可以应用于其他视频分析任务,如动作识别和行为分析。通过调整模型架构和参数,可以适应不同的应用场景。

4. 典型生态项目

4.1 TSN-pytorch

MFF-pytorch 项目基于 TSN-pytorch 代码库构建,TSN-pytorch 是一个用于时间分割网络的 PyTorch 实现,广泛应用于视频分类和动作识别任务。

4.2 NVIDIA 动态手势数据集

NVIDIA 动态手势数据集是一个高质量的手势数据集,广泛用于手势识别和动作分析任务。MFF-pytorch 项目支持该数据集,方便用户进行实验和验证。

4.3 ChaLearn LAP IsoGD 数据集

ChaLearn LAP IsoGD 数据集是一个大型的手势识别数据集,包含多种手势动作。MFF-pytorch 项目支持该数据集,适合进行大规模实验和模型训练。

通过以上模块的介绍,你可以快速上手 MFF-pytorch 项目,并了解其在手势识别和视频分析中的应用。

MFF-pytorch Motion Fused Frames implementation in PyTorch, codes and pretrained models. MFF-pytorch 项目地址: https://gitcode.com/gh_mirrors/mf/MFF-pytorch

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

内容概要:本文档主要介绍了Intel Edge Peak (EP) 解决方案,涵盖从零到边缘高峰的软件配置和服务管理。EP解决方案旨在简化客户的入门门槛,提供一系列工具和服务,包括Edge Software Provisioner (ESP),用于构建和缓存操作系统镜像和软件栈;Device Management System (DMS),用于远程集群或本地集群管理;以及Autonomous Clustering for the Edge (ACE),用于自动化边缘集群的创建和管理。文档详细描述了从软件发布、设备制造、运输、安装到最终设备激活的全过程,并强调了在不同应用场景(如公共设施、工业厂房、海上油井和移动医院)下的具体部署步骤和技术细节。此外,文档还探讨了安全设备注册(FDO)、集群管理、密钥轮换和备份等关键操作。 适合人群:具备一定IT基础设施和边缘计算基础知识的技术人员,特别是负责边缘设备部署和管理的系统集成商和运维人员。 使用场景及目标:①帮助系统集成商和客户简化边缘设备的初始配置和后续管理;②确保设备在不同网络环境下的安全启动和注册;③支持大规模边缘设备的自动化集群管理和应用程序编排;④提供详细的密钥管理和集群维护指南,确保系统的长期稳定运行。 其他说明:本文档是详细描述了Edge Peak技术及其应用案例。文档不仅提供了技术实现的指导,还涵盖了策略配置、安全性和扩展性的考虑,帮助用户全面理解和实施Intel的边缘计算解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尚虹卿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值