Fast3R: 3D重建开源项目教程
1. 项目介绍
Fast3R是由Facebook Research团队开发的一个用于三维重建的开源项目。它能够在单次前向传播中处理超过1000张图像,实现高效的3D重建。该项目基于PyTorch深度学习框架,并使用了最先进的神经网络模型来估计相机姿态和生成三维点云。
2. 项目快速启动
以下是快速启动Fast3R的步骤:
克隆项目
首先,需要克隆项目到本地环境:
git clone https://github.com/facebookresearch/fast3r.git
cd fast3r
创建Conda环境
接着,创建一个Conda环境并激活:
conda create -n fast3r python=3.11 cmake=3.14.0 -y
conda activate fast3r
安装PyTorch和相关依赖
根据系统安装PyTorch及其依赖项:
conda install pytorch torchvision torchaudio pytorch-cuda=12.4 nvidia/label/cuda-12.4.0::cuda-toolkit -c pytorch -c nvidia
安装PyTorch3D
从源代码安装PyTorch3D:
export MAX_JOBS=6 # 如果RAM较小(例如16GB),在编译PyTorch3D时取消注释
pip install "git+https://github.com/facebookresearch/pytorch3d.git@stable"
安装其他要求
安装项目所需的其他依赖:
pip install -r requirements.txt
安装Fast3R
作为包安装Fast3R,以便在项目中导入和使用:
pip install -e .
运行示例
使用以下命令运行示例:
python fast3r/viz/demo.py
这将自动下载预训练模型权重和配置,并启动一个Gradio界面,用户可以上传图像或视频,并可视化3D重建和相机位姿估计。
3. 应用案例和最佳实践
在项目中使用Fast3R
在自定义项目中使用Fast3R,可以导入Fast3R
类并作为常规PyTorch模型使用。以下是一个简单的示例:
import torch
from fast3r.dust3r.utils.image import load_images
from fast3r.dust3r.inference_multiview import inference
from fast3r.models.fast3r import Fast3R
from fast3r.models.multiview_dust3r_module import MultiViewDUSt3RLitModule
# 加载预训练模型
model = Fast3R.from_pretrained("jedyang97/Fast3R_ViT_Large_512")
# 设置设备为CUDA或CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# 创建一个轻量级的Lightning模块包装器
lit_module = MultiViewDUSt3RLitModule.load_for_inference(model)
# 设置模型为评估模式
model.eval()
lit_module.eval()
# 加载图像
filelist = ["path/to/image1.jpg", "path/to/image2.jpg", "path/to/image3.jpg"]
images = load_images(filelist, size=512, verbose=True)
# 运行推断
output_dict, profiling_info = inference(images, model, device, dtype=torch.float32, verbose=True, profiling=True)
# 估计相机姿态
poses_c2w_batch, estimated_focals = MultiViewDUSt3RLitModule.estimate_camera_poses(output_dict['preds'], niter_PnP=100, focal_length_estimation_method='first_view_from_global_head')
# 提取点云
for view_idx, pred in enumerate(output_dict['preds']):
point_cloud = pred['pts3d_in_other_view'].cpu().numpy()
print(f"视图{view_idx}的点云形状: {point_cloud.shape}")
训练和评估
根据官方配置文件进行模型的训练和评估。具体的命令和使用方法请参考项目文档。
4. 典型生态项目
Fast3R的生态系统中包括了多个相关的开源项目,例如用于数据预处理的DUSt3R和用于评估的robustmvd等。这些项目为用户提供了更完整的工作流程,从数据准备到最终的模型评估都能得到支持。
以上就是关于Fast3R项目的简要介绍和快速启动指南。在实际使用过程中,请根据项目的官方文档和社区提供的资源进行更深入的学习和实践。