ComfyUI-TeaCache 使用教程
ComfyUI-TeaCache 项目地址: https://gitcode.com/gh_mirrors/co/ComfyUI-TeaCache
1. 项目介绍
ComfyUI-TeaCache 是一个基于 ComfyUI 的开源项目,它集成了 TeaCache 缓存技术。TeaCache 是一种无需训练的缓存方法,能够估计并利用模型输出在时间步之间的波动差异,从而加速推理过程。适用于图像扩散模型、视频扩散模型和音频扩散模型。ComfyUI-TeaCache 易于使用,只需将 TeaCache 节点与 ComfyUI 的原生节点相连,即可实现无缝使用。
2. 项目快速启动
安装
通过 ComfyUI-Manager 进行安装是最推荐的方式。在节点列表中搜索 ComfyUI-TeaCache 并点击安装。
手动安装步骤如下:
# 进入 ComfyUI 的 custom_nodes 目录
cd ComfyUI/custom_nodes/
# 克隆项目仓库
git clone https://github.com/welltop-cn/ComfyUI-TeaCache.git
# 安装依赖
pip install -r requirements.txt
使用
将 TeaCache 节点添加到工作流中,位于 "Load Diffusion Model" 节点或 "Load LoRA" 节点(如果需要 LoRA)之后。以下是一些不同模型的推荐配置:
| 模型 | rel_l1_thresh | max_skip_steps | 速度提升 | |-----------------------------|---------------|----------------|----------| | FLUX | 0.4 | 3 | 约2倍 | | PuLID-FLUX | 0.4 | 3 | 约1.7倍 | | HunyuanVideo | 0.15 | 3 | 约1.9倍 | | LTX-Video | 0.06 | 3 | 约1.7倍 | | CogVideoX | 0.3 | 3 | 约2倍 | | Wan2.1-T2V-1.3B | 0.08 | 3 | 约1.6倍 | | Wan2.1-T2V-14B | 0.2 | 3 | 约1.8倍 | | Wan2.1-I2V-480P-14B | 0.26 | 3 | 约1.9倍 | | Wan2.1-I2V-720P-14B | 0.25 | 3 | 约1.6倍 | | Wan2.1-T2V-1.3B-ret-mode | 0.15 | 3 | 约2.2倍 | | Wan2.1-T2V-14B-ret-mode | 0.2 | 3 | 约2.1倍 | | Wan2.1-I2V-480P-14B-ret-mode| 0.3 | 3 | 约2.3倍 | | Wan2.1-I2V-720P-14B-ret-mode| 0.3 | 3 | 约2.0倍 |
如果应用 TeaCache 后视频质量较低,例如运动范围较小或静态画面,请尝试减少 rel_l1_thresh 或 max_skip_steps。
3. 应用案例和最佳实践
以下是一些使用 ComfyUI-TeaCache 的案例:
- 对于图像生成,可以将 TeaCache 应用于图像扩散模型,以加速图像生成过程。
- 对于视频生成,TeaCache 能够显著提高视频生成速度,同时保持较高的视频质量。
最佳实践建议:
- 根据不同的模型和需求调整 rel_l1_thresh 和 max_skip_steps 参数。
- 使用 TeaCache 节点之前,确保 "Load Diffusion Model" 或 "Load LoRA" 节点已正确配置。
4. 典型生态项目
ComfyUI-TeaCache 作为 ComfyUI 的一部分,可以与其他 ComfyUI 插件和节点配合使用,例如:
- ComfyUI-CogVideoXWrapper:用于 CogVideoX 模型的节点包装器。
- 其他 ComfyUI 扩散模型和 LoRA 相关节点。
通过整合这些项目,可以构建一个强大的图像和视频生成工作流,提高效率和创造力。
ComfyUI-TeaCache 项目地址: https://gitcode.com/gh_mirrors/co/ComfyUI-TeaCache