【ComfyUI】喝杯奶茶,加速你的Flux工作流!

随着AI绘画进入Flux时代,广大小显存用户都遇到了同一个痛点:慢。

尽快众多开发者通过各种优化和量化,把Flux的使用门槛降到了8G甚至更低显存,但很显然速度是非常缓慢的。

SDXL、SD1.5时代的几秒出图变成了奢望。

最近有开发者放出一个插件,叫TeaCache,可以让Flux提速1.7倍,同时也有提速混元视频模型的效果。

TeaCache是一种免训练的缓存方法,可估计和利用跨时间步的模型输出之间的波动差异,从而加速推理。TeaCache 适用于图像扩散模型、视频扩散模型和音频扩散模型。

TeaCache现已集成到ComfyUI中,并与ComfyUI原生节点兼容。ComfyUI-TeaCache 易于使用,只需将 TeaCache 节点与 ComfyUI 原生节点连接即可无缝使用。

要使用编译模型节点,只需将Compile Model节点添加到工作流程中的 TeaCache 节点之后即可。编译模型用于torch.compile通过将模型编译为更有效的中间表示(IR)来增强模型性能。此编译过程利用后端编译器生成优化的代码,这可以显着加快推理速度。

第一次运行工作流时,编译可能需要很长时间,但是一旦编译完成,推理速度就会非常快。

也就是说,这个插件在批量跑图的时候非常好用,第一次速度慢一点,之后就是风一样的速度!

整体来说,和普通的Flux工作流唯一的区别就是增加了TeaCache节点,按插在绘画模型和模型采样Flux节点之间。

做一下速度对比。

配置:3060 12G。

模型:麦橘超然。

30步,768*1024

使用TeaCache,41.92秒:

跑图:

不使用TeaCache,耗时97.89秒。

跑图效果:

在画质基本不变的情况下,实际速度提高了一倍多。

插件地址:

工作流:

本文转自 https://mp.weixin.qq.com/s/UNDf1yJr4vsfAXRg7ReC0A,如有侵权,请联系删除。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### ComfyUI Flux 工作流概述 ComfyUI 是一款用于简化图像处理流程的应用程序,特别适用于那些希望减少 AI 图像生成过程中人工痕迹的人士。通过使用 ComfyUIFlux 模型,可以实现更自然、更具艺术感的效果[^2]。 ### 加载工作流文件的方法 要启动并运行一个 Flux 工作流,在 ComfyUI 中可以通过简单的拖放操作来加载所需的工作流文件;另一种方式则是利用界面中的“加载”功能按钮来进行选择和导入特定的工作流配置文件[^1]。 ### 创建自定义 Flux 工作流实例 下面是一个创建基本 Flux 工作流的例子: #### 步骤说明转换为具体操作指南 假设目标是从一张输入图片出发,经过一系列预设好的处理步骤最终得到优化后的输出成果。这期间会涉及到多个节点间的交互协作完成整个任务链路的设计与构建过程。 ```python from comfyui import Workflow, Node # 初始化一个新的工作流对象 workflow = Workflow() # 添加读取原始图像作为起点的节点 input_node = workflow.add_node(Node('InputImage')) # 定义中间处理阶段所使用的算法模块(比如风格迁移) style_transfer_node = workflow.add_node(Node('StyleTransfer'), inputs=[input_node]) # 设置保存最终结果至本地磁盘上的终点位置 output_node = workflow.add_node(Node('SaveOutput', params={'path': './result.png'}), inputs=[style_transfer_node]) ``` 这段代码展示了如何建立一个简易版的 Flux 流水线结构——从获取初始素材开始直到最后一步将修改过的版本存储下来为止的一系列动作序列化描述。 ### 获取更多学习资料和支持渠道 对于想要深入了解 ComfyUI 及其 Flux 功能特性的用户来说,除了官方文档外还可以关注一些第三方平台如 揽睿星舟 ,这里提供了 SD WebUI、ComfyUI 等多种工具的一键部署服务以及社区交流机会,有助于加速新手上手速度并解决实际遇到的技术难题[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值