《MiniMind 项目安装与配置指南》

《MiniMind 项目安装与配置指南》

minimind 🚀🚀 「大模型」2小时完全从0训练26M的小参数GPT!🌏 Train a 26M-parameter GPT from scratch in just 2h! minimind 项目地址: https://gitcode.com/gh_mirrors/min/minimind

1. 项目基础介绍

MiniMind 是一个开源项目,旨在从零开始训练一个小型的语言模型。项目提供了完整的代码,包括模型结构、预训练、监督微调、LoRA 微调、直接偏好强化学习(DPO)算法和模型蒸馏算法等。MiniMind 系列模型极其轻量,最小版本体积是 GPT-3 的 1/7000,使得即使是普通的个人 GPU 也能快速训练。

主要编程语言:Python

2. 项目使用的关键技术和框架

  • PyTorch:用于深度学习的开源机器学习库。
  • Transformers:由 Hugging Face 开发的用于自然语言处理的库,提供了一系列预训练模型和工具。
  • TRGL:用于训练大型语言模型的框架。
  • PEFT:用于模型微调的库。

3. 项目安装和配置的准备工作

准备工作

  • 确保你的系统中安装了 Python(推荐版本 3.10 或以上)。
  • 安装 Git 用于克隆项目代码。
  • 准备一个支持 CUDA 的 GPU(NVIDIA GPU 推荐使用 3090)。
  • 安装 CUDA Toolkit(与你的 GPU 兼容的版本)。

安装步骤

步骤 1:克隆项目代码

打开终端(或命令提示符),执行以下命令:

git clone https://github.com/jingyaogong/minimind.git
cd minimind
步骤 2:安装依赖

在项目目录中,执行以下命令安装所需的 Python 包:

pip install -r requirements.txt
步骤 3:环境变量配置

确保你的环境变量中包含 CUDA 的路径,这样 PyTorch 才能正确使用 GPU。

步骤 4:数据集下载

根据项目文档,从提供的数据集链接下载所需的数据文件,并将其放置在项目目录下的 dataset 文件夹中。

步骤 5:开始训练

根据项目文档中的说明,执行以下命令开始预训练:

python train_pretrain.py

之后,可以继续执行其他训练步骤,如监督微调、LoRA 微调等。

步骤 6:测试模型

训练完成后,可以使用以下命令测试模型效果:

python eval_model.py

按照以上步骤,你就可以成功安装并配置 MiniMind 项目,开始你的语言模型训练之旅了。

minimind 🚀🚀 「大模型」2小时完全从0训练26M的小参数GPT!🌏 Train a 26M-parameter GPT from scratch in just 2h! minimind 项目地址: https://gitcode.com/gh_mirrors/min/minimind

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

滑茵珠Gerret

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值