CodeFormer 开源项目使用教程

CodeFormer 开源项目使用教程

CodeFormer [NeurIPS 2022] Towards Robust Blind Face Restoration with Codebook Lookup Transformer CodeFormer 项目地址: https://gitcode.com/gh_mirrors/co/CodeFormer

1、项目介绍

CodeFormer 是一个用于鲁棒盲人脸修复的开源项目,由 S-Lab 的 Shangchen Zhou、Kelvin C.K. Chan、Chongyi Li 和 Chen Change Loy 开发。该项目在 NeurIPS 2022 上发表,旨在通过代码本查找变换器(Codebook Lookup Transformer)实现对人脸图像的鲁棒修复。CodeFormer 支持多种人脸修复任务,包括人脸修复、颜色增强、修复和背景图像增强。

2、项目快速启动

环境准备

首先,确保你的环境满足以下要求:

  • Pytorch >= 1.7.1
  • CUDA >= 10.1
  • 其他依赖包详见 requirements.txt

安装步骤

  1. 克隆项目仓库:

    git clone https://github.com/sczhou/CodeFormer.git
    cd CodeFormer
    
  2. 创建并激活 Conda 环境:

    conda create -n codeformer python=3.8 -y
    conda activate codeformer
    
  3. 安装 Python 依赖:

    pip3 install -r requirements.txt
    python basicsr/setup.py develop
    
  4. 安装 dlib(可选,用于人脸检测或裁剪):

    conda install -c conda-forge dlib
    

快速推理

  1. 下载预训练模型:

    python scripts/download_pretrained_models.py facelib
    python scripts/download_pretrained_models.py dlib  # 仅在使用 dlib 人脸检测时需要
    python scripts/download_pretrained_models.py CodeFormer
    
  2. 准备测试数据: 将测试图像放入 inputs/TestWhole 文件夹,或裁剪对齐后放入 inputs/cropped_faces 文件夹。

  3. 运行推理:

    # 对裁剪对齐的人脸进行修复
    python inference_codeformer.py -w 0.5 --has_aligned --input_path [image folder]|[image path]
    
    # 对整个图像进行增强
    python inference_codeformer.py -w 0.7 --input_path [image folder]|[image path] --bg_upsampler realesrgan --face_upsample
    
    # 对视频进行增强
    conda install -c conda-forge ffmpeg
    python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path [video path]
    

3、应用案例和最佳实践

人脸修复

CodeFormer 可以用于修复老旧照片中的人脸,恢复其细节和清晰度。通过调整 -w 参数,可以在质量和保真度之间找到平衡。

人脸颜色增强

对于黑白或褪色的照片,CodeFormer 提供了颜色增强功能,可以恢复照片的原始色彩。

人脸修复和背景增强

在修复人脸的同时,CodeFormer 还可以增强背景图像,确保整体图像的和谐统一。

4、典型生态项目

Real-ESRGAN

Real-ESRGAN 是一个用于图像超分辨率的工具,CodeFormer 集成了 Real-ESRGAN 用于背景图像的增强。

BasicSR

BasicSR 是一个开源的图像和视频恢复工具包,CodeFormer 基于 BasicSR 构建,提供了更高级的人脸修复功能。

FaceXLib

FaceXLib 是一个专注于人脸分析和处理的库,CodeFormer 从中借鉴了一些代码,用于人脸检测和对齐。

通过这些生态项目的结合,CodeFormer 能够提供更全面和高效的人脸修复解决方案。

CodeFormer [NeurIPS 2022] Towards Robust Blind Face Restoration with Codebook Lookup Transformer CodeFormer 项目地址: https://gitcode.com/gh_mirrors/co/CodeFormer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岑姣盼Estra

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值