FP6-LLM 开源项目教程
项目介绍
FP6-LLM 是一个专注于通过六位量化(FP6)技术高效服务大型语言模型(LLMs)的开源项目。该项目通过算法与系统协同设计,旨在减少大型语言模型的尺寸,同时保持模型质量。FP6-LLM 提供了对现代 GPU 的有效支持,特别是在 A100、H100 和 GH200 等 Tensor Core GPU 上。
项目快速启动
安装步骤
-
克隆仓库:
git clone https://github.com/usyd-fsalab/fp6_llm.git cd fp6_llm
-
编译和链接动态链接库:
- 确保在编译过程中链接动态链接库
fp6.so
。
- 确保在编译过程中链接动态链接库
-
包含头文件:
- 在 C++ 代码中包含必要的头文件:
#include "fp6_linear.cuh"
示例代码
以下是一个简单的示例代码,展示如何使用 FP6-LLM 进行权重预打包和执行混合输入 GEMM:
#include "fp6_linear.cuh"
void main() {
// 权重预打包
int packed_weights[1024];
int FP6Weights[1024];
size_t M = 256; // OC
size_t K = 256; // IC
weight_matrix_prepacking(packed_weights, FP6Weights, M, K);
// 执行 FP6-FP16 混合输入 GEMM
cudaStream_t stream;
cudaStreamCreate(&stream);
const uint4 *Weight = reinterpret_cast<const uint4*>(packed_weights);
const half *Scales = nullptr;
const half *B = nullptr;
half *C = nullptr;
fp6_linear_kernel(stream, Weight, Scales, B, C);
cudaStreamDestroy(stream);
}
应用案例和最佳实践
案例一:LLaMA2 模型推理
FP6-LLM 支持 LLaMA2 模型的端到端推理,通过 DeepSpeed 框架实现。以下是一些最佳实践:
- 优化批处理大小:根据 GPU 内存调整批处理大小,以最大化吞吐量。
- 利用 Tensor 并行:在多 GPU 环境中,使用 Tensor 并行技术减少通信开销。
案例二:OPT-30b 模型加速
FP6-LLM 在 OPT-30b 模型上的线性层执行速度比 FP16 基线快 2.39 倍,主要通过以下方式实现:
- 减少线性层执行时间:通过 FP6 量化减少计算量。
- 避免跨 GPU 通信:在单 GPU 环境中,避免使用 NCCL 进行通信。
典型生态项目
ZeroQuant(4+2)
ZeroQuant 是一个与 FP6-LLM 相关的项目,提供了 C++ 和 PyTorch API 来使用 CUDA 内核。它支持 4+2 量化方法,适用于需要更高精度的场景。
DeepSpeed
DeepSpeed 是一个深度学习优化库,FP6-LLM 通过 DeepSpeed 提供了对 LLaMA2 模型的端到端推理支持。DeepSpeed 的分布式训练和推理能力与 FP6-LLM 的量化技术相结合,提供了高效的模型服务解决方案。
通过以上模块的介绍和示例,您可以快速开始使用 FP6-LLM 项目,并在实际应用中实现高效的模型推理。