FP6-LLM 开源项目教程

FP6-LLM 开源项目教程

fp6_llmAn efficient GPU support for LLM inference with 6-bit quantization (FP6).项目地址:https://gitcode.com/gh_mirrors/fp/fp6_llm

项目介绍

FP6-LLM 是一个专注于通过六位量化(FP6)技术高效服务大型语言模型(LLMs)的开源项目。该项目通过算法与系统协同设计,旨在减少大型语言模型的尺寸,同时保持模型质量。FP6-LLM 提供了对现代 GPU 的有效支持,特别是在 A100、H100 和 GH200 等 Tensor Core GPU 上。

项目快速启动

安装步骤

  1. 克隆仓库

    git clone https://github.com/usyd-fsalab/fp6_llm.git
    cd fp6_llm
    
  2. 编译和链接动态链接库

    • 确保在编译过程中链接动态链接库 fp6.so
  3. 包含头文件

    • 在 C++ 代码中包含必要的头文件:
    #include "fp6_linear.cuh"
    

示例代码

以下是一个简单的示例代码,展示如何使用 FP6-LLM 进行权重预打包和执行混合输入 GEMM:

#include "fp6_linear.cuh"

void main() {
    // 权重预打包
    int packed_weights[1024];
    int FP6Weights[1024];
    size_t M = 256; // OC
    size_t K = 256; // IC
    weight_matrix_prepacking(packed_weights, FP6Weights, M, K);

    // 执行 FP6-FP16 混合输入 GEMM
    cudaStream_t stream;
    cudaStreamCreate(&stream);
    const uint4 *Weight = reinterpret_cast<const uint4*>(packed_weights);
    const half *Scales = nullptr;
    const half *B = nullptr;
    half *C = nullptr;
    fp6_linear_kernel(stream, Weight, Scales, B, C);
    cudaStreamDestroy(stream);
}

应用案例和最佳实践

案例一:LLaMA2 模型推理

FP6-LLM 支持 LLaMA2 模型的端到端推理,通过 DeepSpeed 框架实现。以下是一些最佳实践:

  • 优化批处理大小:根据 GPU 内存调整批处理大小,以最大化吞吐量。
  • 利用 Tensor 并行:在多 GPU 环境中,使用 Tensor 并行技术减少通信开销。

案例二:OPT-30b 模型加速

FP6-LLM 在 OPT-30b 模型上的线性层执行速度比 FP16 基线快 2.39 倍,主要通过以下方式实现:

  • 减少线性层执行时间:通过 FP6 量化减少计算量。
  • 避免跨 GPU 通信:在单 GPU 环境中,避免使用 NCCL 进行通信。

典型生态项目

ZeroQuant(4+2)

ZeroQuant 是一个与 FP6-LLM 相关的项目,提供了 C++ 和 PyTorch API 来使用 CUDA 内核。它支持 4+2 量化方法,适用于需要更高精度的场景。

DeepSpeed

DeepSpeed 是一个深度学习优化库,FP6-LLM 通过 DeepSpeed 提供了对 LLaMA2 模型的端到端推理支持。DeepSpeed 的分布式训练和推理能力与 FP6-LLM 的量化技术相结合,提供了高效的模型服务解决方案。

通过以上模块的介绍和示例,您可以快速开始使用 FP6-LLM 项目,并在实际应用中实现高效的模型推理。

fp6_llmAn efficient GPU support for LLM inference with 6-bit quantization (FP6).项目地址:https://gitcode.com/gh_mirrors/fp/fp6_llm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穆声淼Germaine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值